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The Data

Available training data:
Dn = {21,22,"' ,Zn} c Z,
independently and identically distributed (iid),

drawn from unknown distribution p(Z)

Various forms of the data:
Classification: Z = (X,Y) € R? x {—1,1}
objective: given a new x, estimate P(Y|X = z)
Regression: Z = (X,Y) €¢ R? x R
objective: given a new x, estimate E|Y|X = z]
Density estimation: Z € R¢

objective: given a new z, estimate p(z)
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The Function Space

Learning: search for a good function in a function space F

Examples of functions f(-;0) € F:

Regression:
j=f(z;a,b,c)=a-2*+b-x+c
Classification:
j = f(z;a,b,c) =sign(a-2*+b-z 4+ c)

Density estimation

p(z) = flz;p,2) = =]
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The Loss Function

Learning: search for a good function in a function space F

Examples of loss functions L : Z x F

Regression:

Classification:

0 if f(z) =y

1 otherwise

L(z, f) = L((z,y), f) =

Density estimation:

L(z, f) = —log f(2)
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The Risk and the Empirical Risk

Learning: search for a good function in a function space F

Minimize the Expected Risk on F, defined for a given f as
R(P) = EzlLz. 1)) = [ LG fp(e)a:
Z

Induction Principle:

lect f* = in R
select f* = arg %1}% (f)
problem: p(z) is unknown!!!

Empirical Risk:
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The Risk and the Empirical Risk

The empirical risk is an unbiased estimate of the risk:
Ep[R(f,D)] = R(f)
The principle of empirical risk minimization:

f*(Dn) — arg ?%IJI}R(]E, Dn)

Training error:

A

R(f*(Da), D) = min R(f, D)

Is the training error a biased estimate of the risk?
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The Training Error

Is the training error biased? yes.

The solution f*(D,,) found by minimizing the training error is
better on D,, than on any other set D, drawn from p(Z).

Can we bound the difference between the training error and

the generalization error?
[R(f*(Dn)) = R(f*(Dn), Dy)| <7

Answer: under certain conditions on F, yes.

These conditions depend on the notion of capacity h of F.
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The Capacity

The capacity h(F) is a measure of its size, or complexity.

Classification:

The capacity h(F) is the largest n such that there exist
a set of examples D,, such that one can always find an
f € F which gives the correct answer for all examples in
D,,, for any possible labeling.

Regression and density estimation: capacity exists also, but
more complex to derive (for instance, we can always reduce a

regression problem to a classification problem).

Bound on the expected risk: let 7 = sup L— inf L

. h(ln22 +1)—1n"
P Sule(f)—R(f,Dn)SZT\/ (np +1) —Ing >1-n
feF
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Theoretical Curves

Bound on the Expected Risk

Confidence Interval

Empirical Risk

h
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inf R(f) -

Theoretical Curves

Bound on the Expected Risk

Empirical Risk
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The Bias-Variance Dilemma

The generalization error can be decomposed into 3 parts:

the bias: due to the fact that the set of functions F does
not contain the optimal solution,

the variance: due to the fact that if we had been using
another set D, drawn from the same distribution p(Z), we
would have obtained a different solution,

the noise: even the optimal solution could be wrong! (for

instance if for a given x there are more than one possible y)

Intrinsic dilemma: when the capacity h(F) grows, the bias

goes down, but the variance goes up!
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The Bias-Variance Dilemma (Graphical View)

variance noIse

optimal solution

Set yuions

solution obtained
with training set 1
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Regularization

We have seen that learning = searching in a set of functions
This set should not be too small (underfitting)

This set should not be too large (overfitting)

One solution: regularization

Penalize functions f according to a prior knowledge

For instance, penalize functions that have very large parameters

F(Dn) = axgmin R(f, Dy) + H(f)

with H(f) a function that penalizes according to your prior

For example, in some models:

small parameters — simpler solutions — less capacity
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Early Stopping

Another method for regularization: early stopping.

Works when training is an iterative process.

Instead of selecting the function that minimizes the empirical
risk on D,,, we can do:

divide your training set D,, into two parts
train set D" = {21,292, , 2 }
validation set DY = {2,041, 2tr42, " " 5 Ztriva
tr +va=n

let f*(D') be the current function found at iteration ¢

. 1
] t tr vay — ___ ) t tr
et R(f!(D'"), D) = — > Llz, (D))
ZiEDva
stop training at iteration t* such that

t* = arg mtin R(fY(D'), D)

and return function f(D,) = ft*(DtT)
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Methodology

First: identify the goal! It could be
1. to give the best model you can obtain given a training set?
2. to give the expected performance of a model obtained by
empirical risk minimization given a training set?
3. to give the best model and its expected performance that
you can obtain given a training set?
If the goal is (1): use need to do model selection
If the goal is (2), you need to estimate the risk
If the goal is (3): use need to do both!
There are various methods that can be used for either risk
estimation or model selection:
simple validation
cross validation (k-fold, leave-one-out)

sequential validation (for time series)
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Model Selection - Validation

Select a family of functions with hyper-parameter 6

Divide your training set D,, into two parts

t
Dr:{zlaz27'” 7Zt7“}

te __
D* = {ztr41, Ztr42, **  Ztrtte}
tr +te =n

For each value 6,,, of the hyper-parameter 6

lect fr (DY) = R(f, D
select fg (D™) = argfrenj}_glm (f, D)

let R(fg ,D*) = Z L(zi, f5, (D))

2 EDte

select 0% = arg n(glin }?i(fgm,Dte)

m

¢ *(Dy) = R
return f*(Dy) = argfrenjgi (f, Dn)
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Model Selection - Cross-validation

Select a family of functions with hyper-parameter 6

Divide your training set D,, into k distinct and equal parts
D' ... DF

For each value 6,,, of the hyper-parameter 6

For each part D7 (and its counterpart D7)

lect f (D7) = in R(f, D’
select fg (D7) al“gf]éﬂjglm (f, D7)

. _ 1 _
let R(f; (D7),DJ) = o] > Lz, f5, (D7)

z;€DJ

estimate Ry, (f) = % Z l?(fgm(Dj), D7)

J

select 6 = arg Délin R, (f)

t “(D,,) = in R(f,D,
return f*(Dy) = arg i (f, Dn)
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Estimation of the Risk - Validation

Divide your training set D,, into two parts

tr __
DT—{lezQJH' 7zt7“}
te __
D = {Ztr—l—la Ztr+42y """ ath-l—te}
tr +te =n

lect f*(Dtr) = in R(f, D'
select f*(D*) arg min (f, D)

(this optimization process could include model selection)

estimate R(f) = R(f*(Dtr D) = Z L(z;, f*(D™))
Z; GDte
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Estimation of the Risk - Cross-validation

Divide your training set D,, into k distinct and equal parts
Dt ... Dk

For each part D’

let D7 be the set of examples that are in D,, but not in D’

lect f*(D7) = in R(f, D’
select f*(D7) = argmin R(f, D7)
(this process could include model selection)

let R(f*(D7), D7) = — Y L(z, (D))

estimate R(f) = %Zﬁ(f*(l_)j),Dj)
J

When k = n: leave-one-out cross-validation
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Estimation of the Risk - Sequential Validation

When data is sequential in nature (time series)

Divide your training set D,, into k£ distinct and equal
sequential blocks D, ..., D¥

For j=1—-k—1

J
lect £*(D177) = R( D’
select f*( ) = arg%g_ f,U )

(this process could include model selection)

. 1 -
lot R(f*(D'=7), D7) = ry D, Lz f7(D7))
z;€DIi+1
estimate R(f Z *(D'77), D7t
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Estimation of the Risk - Bootstrap

Is our estimate of the risk really accurate?
Let us use Bootstrap to estimate the accuracy of a given
statistics:

Let us create N bootstraps of D,

For each bootstrap B;, get an estimate of the risk R; (using

cross-validation for instance)

You can now compute estimates of the mean and the
standard deviation of your estimates of the risk:

1 &
R:N;Rj

a—\Nl_lz@_R)Q
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Bootstrap

Given a data set D,, with n examples drawn from p(Z2)

A bootstrap B; of D,, also contains n examples:

h

For j =1 — n, the jt example of B, is drawn independently

with replacement from D,

Hence,
some examples from D, are in multiple copies in B;

and some examples from D,, are not in B;
Hypothesis: the examples were iid drawn from p(Z)

Hence, the datasets B; are as plausible as D,,, but drawn from
D,, instead of p(Z).
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Estimation of the Risk and Model Selection

When you want both the best model and its expected risk.
You then need to merge the methods already presented.
For instance:

train-validation-test: 3 separate data sets are necessary

cross-validation + test: cross-validate on train set, then test
on separate set

double-cross-validation: for each subset, need to do a second
cross-validation with the £ — 1 other subsets
Other important methodological aspects:
compare your results with other methods!!!!
use statistical tests to verify significance

verify your model on other datasets
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Train - Validation - Test

Select a family of functions with hyper-parameter 6
Divide your training set D,, into three parts D", D%, and D?®

For each value 6,, of the hyper-parameter 6

lect f5 (D) = in R(f, D"
select fg (D) argfrenj}_glm (f, D)

. 1 % r
let R(fy ,D")=— Y L(z f;, (D))
select 6 = arg nélin R(fgm,D”“)

select f*(D' U DY) = arg min R(f, D'" U D"%)
feFox

1
estimate R(f) — E Z L(Zi,f*(Dtr U Dva))
ZiEDte
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Cross-validation + Test

Select a family of functions with hyper-parameter 6

Divide you dataset D,, into two parts:

a training set D" and a test set D'

For each value 6,, of the hyper-parameter 6

estimate Ry, (D) using cross-validation

select 0% = argmin Ry, (D)

m

t . * Dt?« _ . R Dt’r’
retrain f*(D'") = arg fénj}_gl;kn (f, D)

estimate R(f) p— % Z L(Zz,f*(DtT))

z;€Dte
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Double Cross-validation

Select a family of functions with hyper-parameter 6

Divide your training set D,, into k distinct and equal parts
Dt ... Dk

For each part D’
select the best model f*(D7) by cross-validation on D7

let R(f*(D7), D) = yp—ljy > Lz, (D7)

2z, €DJ
estimate R(f) = %Z}?(f*(l_?j),Dj)
J

Note: this process only gives you an estimate of the risk, but
not a model. If you need the model as well, you have to

perform a separate model selection process!
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Double Cross-validation

the whole dataset 1s
cut into 3 parts

the first 2 parts are cut into 3 parts
then perform a 3—fold cross—valid to
select the best hyper—parameter

ﬁll

the best hyper—parameter 1s used to
retrain on the 2 original parts and test
on the other one

... and do the same for each part to estimate risk
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