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The Data

• Available training data:

◦ Dn = {z1, z2, · · · , zn} ∈ Z,

◦ independently and identically distributed ( iid),

◦ drawn from unknown distribution p(Z)

• Various forms of the data:

◦ Classification: Z = (X, Y ) ∈ R
d × {−1, 1}

objective: given a new x, estimate P (Y |X = x)

◦ Regression: Z = (X, Y ) ∈ R
d × R

objective: given a new x, estimate E[Y |X = x]

◦ Density estimation: Z ∈ R
d

objective: given a new z, estimate p(z)
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The Function Space

• Learning: search for a good function in a function space F

• Examples of functions f(·; θ) ∈ F :

◦ Regression:

ŷ = f(x; a, b, c) = a · x2 + b · x + c

◦ Classification:

ŷ = f(x; a, b, c) = sign(a · x2 + b · x + c)

◦ Density estimation

p̂(z) = f(z; µ, Σ) =
1

(2π)
|z|
2

√

|Σ|
exp

(

−
1

2
(z − µ)T Σ−1(z − µ)

)
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The Loss Function

• Learning: search for a good function in a function space F

• Examples of loss functions L : Z × F

◦ Regression:

L(z, f) = L((x, y), f) = (f(x) − y)2

◦ Classification:

L(z, f) = L((x, y), f) =







0 if f(x) = y

1 otherwise

◦ Density estimation:

L(z, f) = − log f(z)
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The Risk and the Empirical Risk

• Learning: search for a good function in a function space F

• Minimize the Expected Risk on F , defined for a given f as

R(f) = EZ [L(z, f)] =

∫

Z

L(z, f)p(z)dz

• Induction Principle:

◦ select f∗ = arg min
f∈F

R(f)

◦ problem: p(z) is unknown!!!

• Empirical Risk:

R̂(f, Dn) =
1

n

n
∑

i=1

L(zi, f)
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The Risk and the Empirical Risk

• The empirical risk is an unbiased estimate of the risk:

ED[R̂(f, D)] = R(f)

• The principle of empirical risk minimization:

f∗(Dn) = arg min
f∈F

R̂(f, Dn)

• Training error:

R̂(f∗(Dn), Dn) = min
f∈F

R̂(f, Dn)

• Is the training error a biased estimate of the risk?
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The Training Error

• Is the training error biased? yes.

E[R(f∗(Dn)) − R̂(f∗(Dn), Dn)] ≥ 0

• The solution f∗(Dn) found by minimizing the training error is

better on Dn than on any other set D
′

n drawn from p(Z).

• Can we bound the difference between the training error and

the generalization error?

|R(f∗(Dn)) − R̂(f∗(Dn), Dn)| ≤?

• Answer: under certain conditions on F , yes.

• These conditions depend on the notion of capacity h of F .
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The Capacity

• The capacity h(F) is a measure of its size, or complexity.

• Classification:

The capacity h(F) is the largest n such that there exist

a set of examples Dn such that one can always find an

f ∈ F which gives the correct answer for all examples in

Dn, for any possible labeling.

• Regression and density estimation: capacity exists also, but

more complex to derive (for instance, we can always reduce a

regression problem to a classification problem).

• Bound on the expected risk: let τ = sup L− inf L

P



sup
f∈F

|R(f) − R̂(f, Dn)| ≤ 2τ

√

h
(

ln 2n
h

+ 1
)

− ln η
9

n



 ≥ 1−η
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Theoretical Curves

Confidence Interval

h

Bound on the Expected Risk

Empirical Risk
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Theoretical Curves

inf R(f)

Empirical Risk

n

Bound on the Expected Risk
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The Bias-Variance Dilemma

• The generalization error can be decomposed into 3 parts:

◦ the bias: due to the fact that the set of functions F does

not contain the optimal solution,

◦ the variance: due to the fact that if we had been using

another set D
′

n drawn from the same distribution p(Z), we

would have obtained a different solution,

◦ the noise: even the optimal solution could be wrong! (for

instance if for a given x there are more than one possible y)

• Intrinsic dilemma: when the capacity h(F) grows, the bias

goes down, but the variance goes up!
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The Bias-Variance Dilemma (Graphical View)

optimal solution
bias

noise

set of functions

variance

solution obtained
with training set 1

solution obtained
with training set 2

the size of
depends on the size of
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Regularization

• We have seen that learning = searching in a set of functions

• This set should not be too small ( underfitting)

• This set should not be too large ( overfitting)

• One solution: regularization

• Penalize functions f according to a prior knowledge

• For instance, penalize functions that have very large parameters

f∗(Dn) = arg min
f∈F

R̂(f, Dn) + H(f)

with H(f) a function that penalizes according to your prior

• For example, in some models:

small parameters → simpler solutions → less capacity
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Early Stopping

• Another method for regularization: early stopping.

• Works when training is an iterative process.

• Instead of selecting the function that minimizes the empirical

risk on Dn, we can do:

◦ divide your training set Dn into two parts

◦ train set Dtr = {z1, z2, · · · , ztr}

◦ validation set Dva = {zva+1, ztr+2, · · · , ztr+va}

◦ tr + va = n

◦ let f t(Dtr) be the current function found at iteration t

◦ let R̂(f t(Dtr), Dva) =
1

va

∑

zi∈Dva

L(zi, f
t(Dtr))

◦ stop training at iteration t∗ such that

t∗ = arg min
t

R̂(f t(Dtr), Dva)

and return function f(Dn) = f t∗(Dtr)
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Methodology

• First: identify the goal! It could be

1. to give the best model you can obtain given a training set?

2. to give the expected performance of a model obtained by

empirical risk minimization given a training set?

3. to give the best model and its expected performance that

you can obtain given a training set?

• If the goal is (1): use need to do model selection

• If the goal is (2), you need to estimate the risk

• If the goal is (3): use need to do both!

• There are various methods that can be used for either risk

estimation or model selection:

◦ simple validation

◦ cross validation (k-fold, leave-one-out)

◦ sequential validation (for time series)
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Model Selection - Validation

• Select a family of functions with hyper-parameter θ

• Divide your training set Dn into two parts

◦ Dtr = {z1, z2, · · · , ztr}

◦ Dte = {ztr+1, ztr+2, · · · , ztr+te}

◦ tr + te = n

• For each value θm of the hyper-parameter θ

◦ select f∗
θm

(Dtr) = arg min
f∈Fθm

R̂(f, Dtr)

◦ let R̂(f∗
θm

, Dte) =
1

te

∑

zi∈Dte

L(zi, f
∗
θm

(Dtr))

• select θ∗m = arg min
θm

R̂(f∗
θm

, Dte)

• return f∗(Dn) = arg min
f∈Fθ∗

m

R̂(f, Dn)
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Model Selection - Cross-validation

• Select a family of functions with hyper-parameter θ

• Divide your training set Dn into k distinct and equal parts

D1, · · · , Dk

• For each value θm of the hyper-parameter θ

◦ For each part Dj (and its counterpart D̄j)

◦ select f∗
θm

(D̄j) = arg min
f∈Fθm

R̂(f, D̄j)

◦ let R̂(f∗
θm

(D̄j), Dj) =
1

|Dj |

∑

zi∈Dj

L(zi, f
∗
θm

(D̄j))

◦ estimate R̂θm
(f) =

1

k

∑

j

R̂(f∗
θm

(D̄j), Dj)

• select θ∗m = arg min
θm

R̂θm
(f)

• return f∗(Dn) = arg min
f∈Fθ∗

m

R̂(f, Dn)
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Estimation of the Risk - Validation

• Divide your training set Dn into two parts

◦ Dtr = {z1, z2, · · · , ztr}

◦ Dte = {ztr+1, ztr+2, · · · , ztr+te}

◦ tr + te = n

• select f∗(Dtr) = arg min
f∈F

R̂(f, Dtr)

(this optimization process could include model selection)

• estimate R(f) = R̂(f∗(Dtr), Dte) =
1

te

∑

zi∈Dte

L(zi, f
∗(Dtr))
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Estimation of the Risk - Cross-validation

• Divide your training set Dn into k distinct and equal parts

D1, · · · , Dk

• For each part Dj

◦ let D̄j be the set of examples that are in Dn but not in Dj

◦ select f∗(D̄j) = arg min
f∈F

R̂(f, D̄j)

(this process could include model selection)

◦ let R̂(f∗(D̄j), Dj) =
1

|Dj |

∑

zi∈Dj

L(zi, f
∗(D̄j))

• estimate R(f) =
1

k

∑

j

R̂(f∗(D̄j), Dj)

• When k = n: leave-one-out cross-validation
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Estimation of the Risk - Sequential Validation

• When data is sequential in nature (time series)

• Divide your training set Dn into k distinct and equal

sequential blocks D1, · · · , Dk

• For j = 1 → k − 1

◦ select f∗(D1→j) = arg min
f∈F

R̂(f,

j
⋃

i=1

Di)

(this process could include model selection)

◦ let R̂(f∗(D1→j), Dj+1) =
1

|Dj+1|

∑

zi∈Dj+1

L(zi, f
∗(D1→j))

• estimate R(f) =
1

k − 1

k−1
∑

j=1

R̂(f∗(D1→j), Dj+1)
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Estimation of the Risk - Bootstrap

• Is our estimate of the risk really accurate?

• Let us use Bootstrap to estimate the accuracy of a given

statistics:

◦ Let us create N bootstraps of Dn

◦ For each bootstrap Bi, get an estimate of the risk Ri (using

cross-validation for instance)

◦ You can now compute estimates of the mean and the

standard deviation of your estimates of the risk:

R̄ =
1

N

N
∑

j=1

Rj

σ =

√

√

√

√

1

N − 1

N
∑

i=1

(

Ri − R̄
)2
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Bootstrap

• Given a data set Dn with n examples drawn from p(Z)

• A bootstrap Bi of Dn also contains n examples:

• For j = 1 → n, the jth example of Bi is drawn independently

with replacement from Dn

• Hence,

◦ some examples from Dn are in multiple copies in Bi

◦ and some examples from Dn are not in Bi

• Hypothesis: the examples were iid drawn from p(Z)

• Hence, the datasets Bi are as plausible as Dn, but drawn from

Dn instead of p(Z).
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Estimation of the Risk and Model Selection

• When you want both the best model and its expected risk.

• You then need to merge the methods already presented.

For instance:

◦ train-validation-test: 3 separate data sets are necessary

◦ cross-validation + test: cross-validate on train set, then test

on separate set

◦ double-cross-validation: for each subset, need to do a second

cross-validation with the k − 1 other subsets

• Other important methodological aspects:

◦ compare your results with other methods!!!!

◦ use statistical tests to verify significance

◦ verify your model on other datasets

Statistical Learning Theory 24



Train - Validation - Test

• Select a family of functions with hyper-parameter θ

• Divide your training set Dn into three parts Dtr, Dva, and Dte

• For each value θm of the hyper-parameter θ

◦ select f∗
θm

(Dtr) = arg min
f∈Fθm

R̂(f, Dtr)

◦ let R̂(f∗
θm

, Dva) =
1

va

∑

zi∈Dva

L(zi, f
∗
θm

(Dtr))

• select θ∗m = arg min
θm

R̂(f∗
θm

, Dva)

• select f∗(Dtr ∪ Dva) = arg min
f∈Fθ∗

m

R̂(f, Dtr ∪ Dva)

• estimate R(f) =
1

te

∑

zi∈Dte

L(zi, f
∗(Dtr ∪ Dva))

Statistical Learning Theory 25



Cross-validation + Test

• Select a family of functions with hyper-parameter θ

• Divide you dataset Dn into two parts:

a training set Dtr and a test set Dte

• For each value θm of the hyper-parameter θ

estimate R̂θm
(Dtr) using cross-validation

• select θ∗m = arg min
θm

R̂θm
(Dtr)

• retrain f∗(Dtr) = arg min
f∈Fθ∗

m

R̂(f, Dtr)

• estimate R(f) =
1

te

∑

zi∈Dte

L(zi, f
∗(Dtr))

Statistical Learning Theory 26



Double Cross-validation

• Select a family of functions with hyper-parameter θ

• Divide your training set Dn into k distinct and equal parts

D1, · · · , Dk

• For each part Dj

◦ select the best model f∗(D̄j) by cross-validation on D̄j

◦ let R̂(f∗(D̄j), Dj) =
1

|Dj |

∑

zi∈Dj

L(zi, f
∗(D̄j))

• estimate R(f) =
1

k

∑

j

R̂(f∗(D̄j), Dj)

• Note: this process only gives you an estimate of the risk, but

not a model. If you need the model as well, you have to

perform a separate model selection process!
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Double Cross-validation

the best hyper−parameter is used to
retrain on the 2 original parts and test
on the other one

then perform a 3−fold cross−valid to
select the best hyper−parameter

the first 2 parts are cut into 3 parts

cut into 3 parts
the whole dataset is

... and do the same for each part to estimate risk
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