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Support Vector Machines

1. The aim of SVMs

2. Linear SVMs and soft margin

3. Solving the SVMs problem using a Lagrangian method

4. Kernel trick

5. Support Vector Regression
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SVMs in Two Slides (1/2)
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SVMs in Two Slides (2/2)

ENTERING MATHEMATICAL AREA
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Few Notations (1/2)

• Training set:

(xt, yt)t=1...T ∈ R
d × {−1, 1}

• We would like to find one hyperplane

wx + b = 0 (w ∈ R
d, b ∈ R)

which separates the two classes and maximizes the margin.
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Few Notations (2/2)

M
argin

wx + b = 0

wx + b = 1

wx + b = −1
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My First Equation

• Margin to maximize:

dist(wx + b = 1, wx + b = −1) =
2

‖w‖

• We would like to minimize:

J(w, b) =
‖w‖2

2

Under the constraints:

yt(wxt + b) ≥ 1 ∀t
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A Bug

This minimization problem does not have any solution if the two

classes are not separable.
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Fixing The Bug: “Soft” Margin

• Relax the constraints: use a soft margin instead of a hard

margin.

• We would like to minimize:

J(w, b, ξ) =
‖w‖2

2
+ C

T
∑

t=1

ξt

Under the constraints:

yt(wxt + b) ≥ 1 − ξt ∀t

ξt ≥ 0 ∀t
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Two Slides on Lagrangian Method (1/2)

• We want to find u such that:

J(u) = inf
v∈U

J(v)

u ∈ U = {v ∈ R
n : ϕi(v) ≤ 0 ∀i}

• Introduce the Lagrangian:

L(v, µ) = J(v) +
∑

i

µi ϕi(v) (µi ≥ 0)
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Two Slides on Lagrangian Method (2/2)

• Theorem: If (u, λ) is a saddle point of the Lagrangian L, then

(u, λ) is a solution of the constrained minimization problem.

• (u, λ) is a saddle point of the function L if u is a minimum for

the function v 7→ L(v, λ) and λ is a maximum for the function

µ 7→ L(u, µ).
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Back to SVMs

• Our Lagrangian:

L(w, b, ξ, α, µ) = J(w, b, ξ) +
∑

t

αt[1 − ξt − yt(wxt + b)] −
∑

t

µtξt

=
‖w‖2

2
+ C

T
∑

t=1

ξt +
∑

t

αt[1 − ξt − yt(wxt + b)] −
∑

t

µtξt

(αt ≥ 0 and µt ≥ 0)

• Look for (w, b, ξ) minimum of L:

∂L

∂w
= 0 ⇔ w =

∑

t

αtyt xt

∂L

∂b
= 0 ⇔

∑

t

αtyt = 0

∂L

∂ξ
= 0 ⇔ C − αt − µt = 0

Support Vector Machines 12



The Nightmare Continues...

• Insert in the Lagrangian:

L =
∑

t

αt −
1

2

∑

s,t

αsαtysyt xsxt

0 ≤ αt ≤ C
∑

t

αtyt = 0

w =
∑

t

αtyt xt

• Look for (α, µ) maximum of L:

αt[1 − ξt − yt(wxt + b)] = 0

µtξt = 0
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Yes!

• Finaly, we “just” have to minimize

α 7→ 1

2
αTQα − αT1

where

Qij = yiyj xixj

Under the constraints

0 ≤ αt ≤ C and
∑

t

αtyt = 0

• Then we obtain w and b with

w =
∑

t

αtyt xt

αt[1 − ξt − yt(wxt + b)] = 0
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Support Vector Etymology

• Note that the decision function could be rewritten as:

x 7→
∑

t

αtyt xtx + b

• Training examples xt with αt 6= 0 are support vectors.
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0 ≤ αt ≤ C
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Non Linear SVMs

• Project the data into a higher dimensional space: it should be

easier to separate the two classes.

• Given a function Ψ : R
d → F , work with Ψ(xt) instead of

working with xt.
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The Kernel Trick

• Note that we have only dot products Ψ(xs)Ψ(xt) to compute.

• Unfortunately, it could be expensive in a high dimensional

space.

• Use instead a kernel: a function (x, z) 7→ k(x, z) which

represents a dot product in a “hidden” feature space.

k(x, z) = Ψ(x)Ψ(z)

• Example: instead of

Ψ(x) =









x2
1√

2x1x2

x2
2









use

k(x, z) = (xz)2
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Common Kernels

• Polynomial:

k(x, z) = (u xz + v)p (u ∈ R, v ∈ R, p ∈ N
∗

+)

• Gaussian:

k(x, z) = exp

(

−‖x − z‖2

2σ2

)

(σ ∈ R
∗

+)

• The function

k(x, z) = tanh(u xz + v)

is not a kernel!
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Final Abstract

• Choose a kernel k().

• Minimize

α 7→ 1

2
αTQα − αT1

where

Qij = yiyj k(xi, xj)

Under the constraints

0 ≤ αt ≤ C and
∑

t

αtyt = 0

• For 0 < αt < C, compute b using

1 − yt

[

∑

s

αsys k(xs, xt) + b

]

= 0
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Final Abstract

• The decision function will be

x 7→ sign

(

∑

t

αtyt k(xt, x) + b

)
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Facts to Remember

• SVMs maximize the margin (in the feature space)

• Use the soft margin trick

• Project the data into a higher dimensional space for non-linear

relations

• Kernels simplify the computation

• A Lagrangian method leads to a “nice” quadratic

minimization problem under constraints.
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SVMs in Practice

• In order to tune the capacity, the kernel is the most important

parameter to choose.

◦ Polynomial kernel: increasing the degree will increase the

capacity.

◦ Gaussian kernel: increasing σ will decrease the capacity.

• Tune C, the trade-off between the margin and the errors.

◦ For non-noisy data sets, C usually has not much influence.

◦ Carefully choose C for noisy data sets: small values usually

give better results.
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Two Bonus Slides: SVMs in Regression (1/2)

• We are looking for an hyperplane x 7→ wx + b such that...

ε

x 7→ wx + b

x 7→ wx + b + ε

x 7→ wx + b − ε

ξt

ξ?
t
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Two Bonus Slides: SVMs in Regression (2/2)

• We would like to minimize

1

2
‖w‖2 + C

∑

t

|wxt + b − yt|ε

where

|u|ε = max (0, |u| − ε)

• “Epsilon insensitive loss”: we “ignore” errors lower than ε.

• Equivalent to minimize

1

2
‖w‖2 + C

∑

t

(ξt + ξ?
t )

under the constraints

(wxt + b) − yt ≤ ε + ξt

yt − (wxt + b) ≤ ε + ξ?
t

ξt, ξ?
t ≥ 0
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Other kernel methods

• Multi-class SVMs

• Kernel PCA

• Gaussian Processes

• http://www.kernel-machines.org
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