

*An Introduction to  
Statistical Machine Learning  
- Support Vector Machines -*

**Ronan Collobert**

collober@idiap.ch

Dalle Molle Institute for Perceptual Artificial Intelligence (IDIAP)

CP 592, rue du Simplon 4

1920 Martigny, Switzerland

<http://www.idiap.ch/~collober>

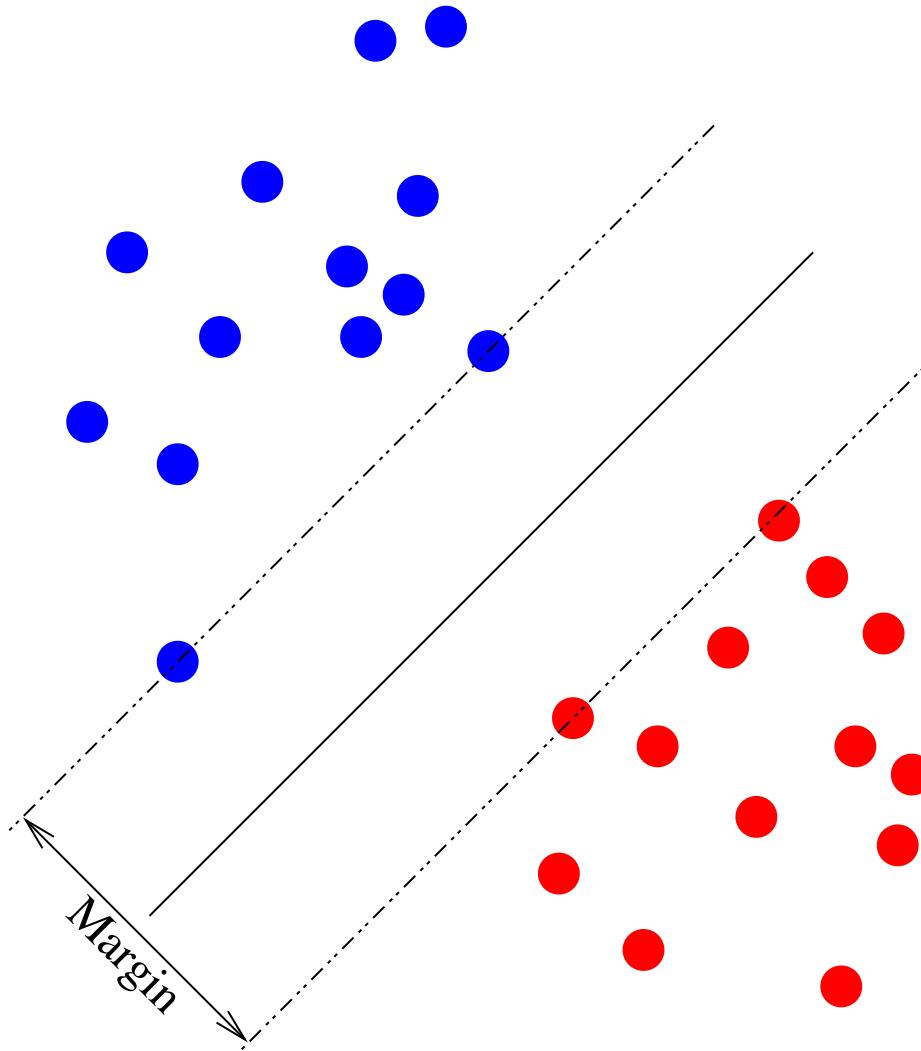
# Support Vector Machines

---

1. The aim of SVMs
2. Linear SVMs and soft margin
3. Solving the SVMs problem using a Lagrangian method
4. Kernel trick
5. Support Vector Regression

# SVMs in Two Slides (1/2)

---



# SVMs in Two Slides (2/2)

---



**ENTERING MATHEMATICAL AREA**

# Few Notations (1/2)

---

- Training set:

$$(x_t, y_t)_{t=1 \dots T} \in \mathbb{R}^d \times \{-1, 1\}$$

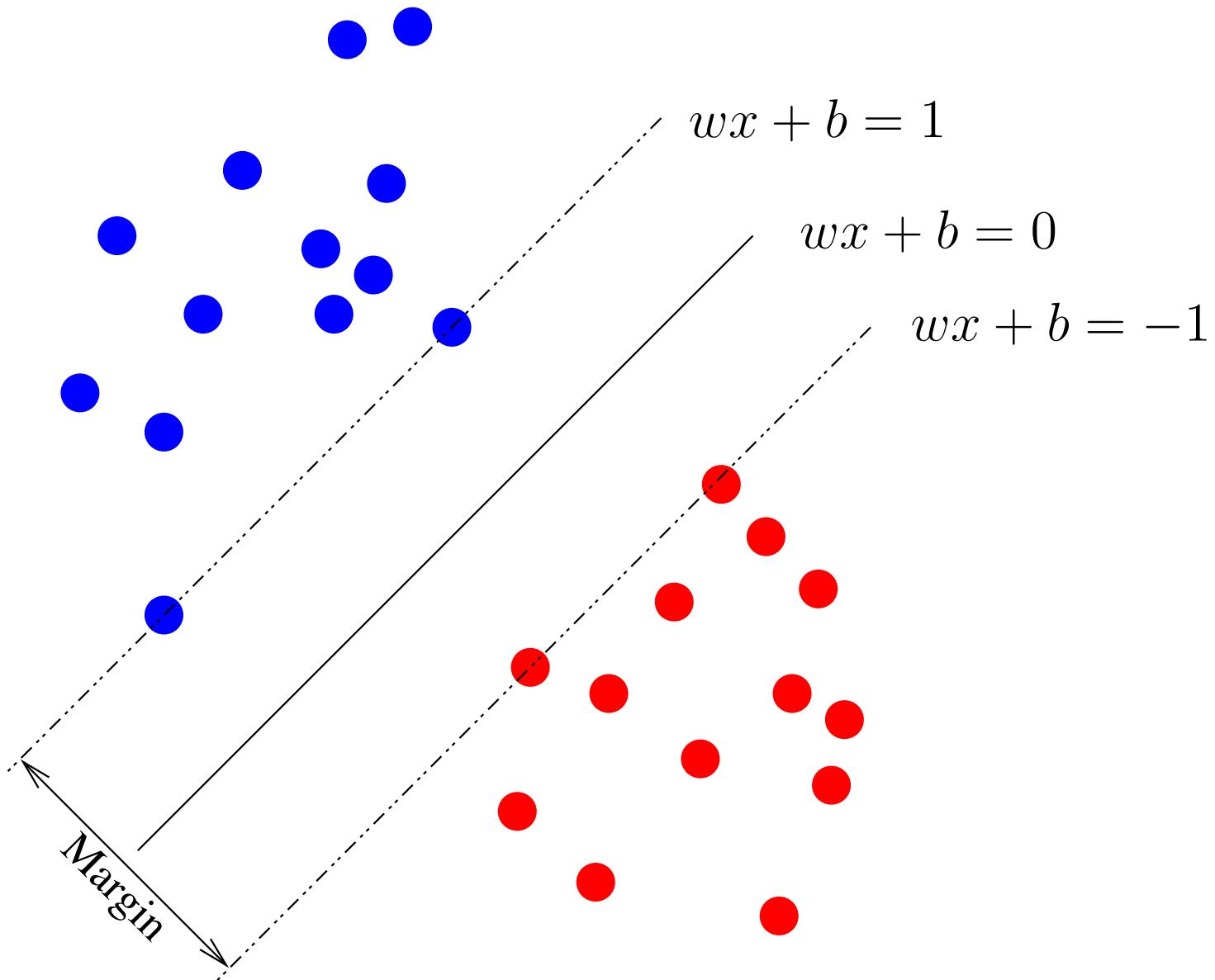
- We would like to find *one* hyperplane

$$wx + b = 0 \quad (w \in \mathbb{R}^d, \ b \in \mathbb{R})$$

which **separates** the two classes and **maximizes the margin**.

## Few Notations (2/2)

---



# My First Equation

---

- Margin to *maximize*:

$$\text{dist}(wx + b = 1, wx + b = -1) = \frac{2}{\|w\|}$$

- We would like to *minimize*:

$$J(w, b) = \frac{\|w\|^2}{2}$$

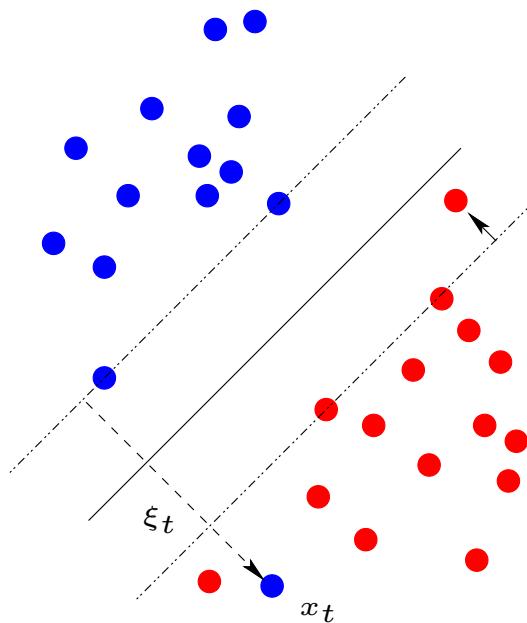
Under the constraints:

$$y_t(wx_t + b) \geq 1 \quad \forall t$$

# A Bug

---

This minimization problem does not have any solution if the two classes are not separable.



# Fixing The Bug: “Soft” Margin

---

- Relax the constraints: use a **soft margin** instead of a **hard margin**.
- We would like to **minimize**:

$$J(w, b, \xi) = \frac{\|w\|^2}{2} + C \sum_{t=1}^T \xi_t$$

Under the constraints:

$$y_t(wx_t + b) \geq 1 - \xi_t \quad \forall t$$

$$\xi_t \geq 0 \quad \forall t$$

# Two Slides on Lagrangian Method (1/2)

---

- We want to **find  $u$**  such that:

$$J(u) = \inf_{v \in U} J(v)$$

$$u \in U = \{v \in \mathbb{R}^n : \varphi_i(v) \leq 0 \quad \forall i\}$$

- Introduce the **Lagrangian**:

$$L(v, \mu) = J(v) + \sum_i \mu_i \varphi_i(v) \quad (\mu_i \geq 0)$$

## Two Slides on Lagrangian Method (2/2)

---

- Theorem: If  $(u, \lambda)$  is a saddle point of the Lagrangian  $L$ , then  $(u, \lambda)$  is a solution of the constrained minimization problem.
- $(u, \lambda)$  is a saddle point of the function  $L$  if  $u$  is a minimum for the function  $v \mapsto L(v, \lambda)$  and  $\lambda$  is a maximum for the function  $\mu \mapsto L(u, \mu)$ .

# Back to SVMs

---

- Our Lagrangian:

$$\begin{aligned} L(w, b, \xi, \alpha, \mu) &= J(w, b, \xi) + \sum_t \alpha_t [1 - \xi_t - y_t(wx_t + b)] - \sum_t \mu_t \xi_t \\ &= \frac{\|w\|^2}{2} + C \sum_{t=1}^T \xi_t + \sum_t \alpha_t [1 - \xi_t - y_t(wx_t + b)] - \sum_t \mu_t \xi_t \\ &\quad (\alpha_t \geq 0 \quad \text{and} \quad \mu_t \geq 0) \end{aligned}$$

- Look for  $(w, b, \xi)$  minimum of  $L$ :

$$\frac{\partial L}{\partial w} = 0 \Leftrightarrow w = \sum_t \alpha_t y_t x_t$$

$$\frac{\partial L}{\partial b} = 0 \Leftrightarrow \sum_t \alpha_t y_t = 0$$

$$\frac{\partial L}{\partial \xi} = 0 \Leftrightarrow C - \alpha_t - \mu_t = 0$$

# The Nightmare Continues...

---

- Insert in the Lagrangian:

$$L = \sum_t \alpha_t - \frac{1}{2} \sum_{s,t} \alpha_s \alpha_t y_s y_t x_s x_t$$

$$0 \leq \alpha_t \leq C$$

$$\sum_t \alpha_t y_t = 0$$

$$w = \sum_t \alpha_t y_t x_t$$

- Look for  $(\alpha, \mu)$  maximum of  $L$ :

$$\alpha_t [1 - \xi_t - y_t (w x_t + b)] = 0$$

$$\mu_t \xi_t = 0$$

# Yes!

---

- Finally, we “just” have to minimize

$$\alpha \mapsto \frac{1}{2} \alpha^T Q \alpha - \alpha^T 1$$

where

$$Q_{ij} = y_i y_j x_i x_j$$

Under the constraints

$$0 \leq \alpha_t \leq C \quad \text{and} \quad \sum_t \alpha_t y_t = 0$$

- Then we obtain  $w$  and  $b$  with

$$w = \sum_t \alpha_t y_t x_t$$

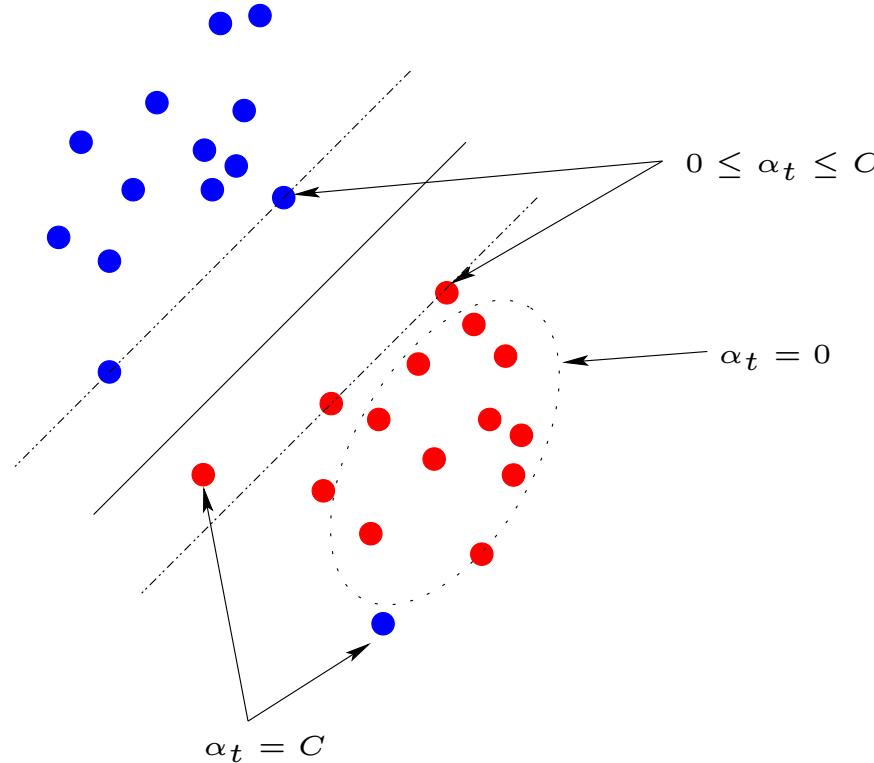
$$\alpha_t [1 - \xi_t - y_t (w x_t + b)] = 0$$

# Support Vector Etymology

- Note that the decision function could be rewritten as:

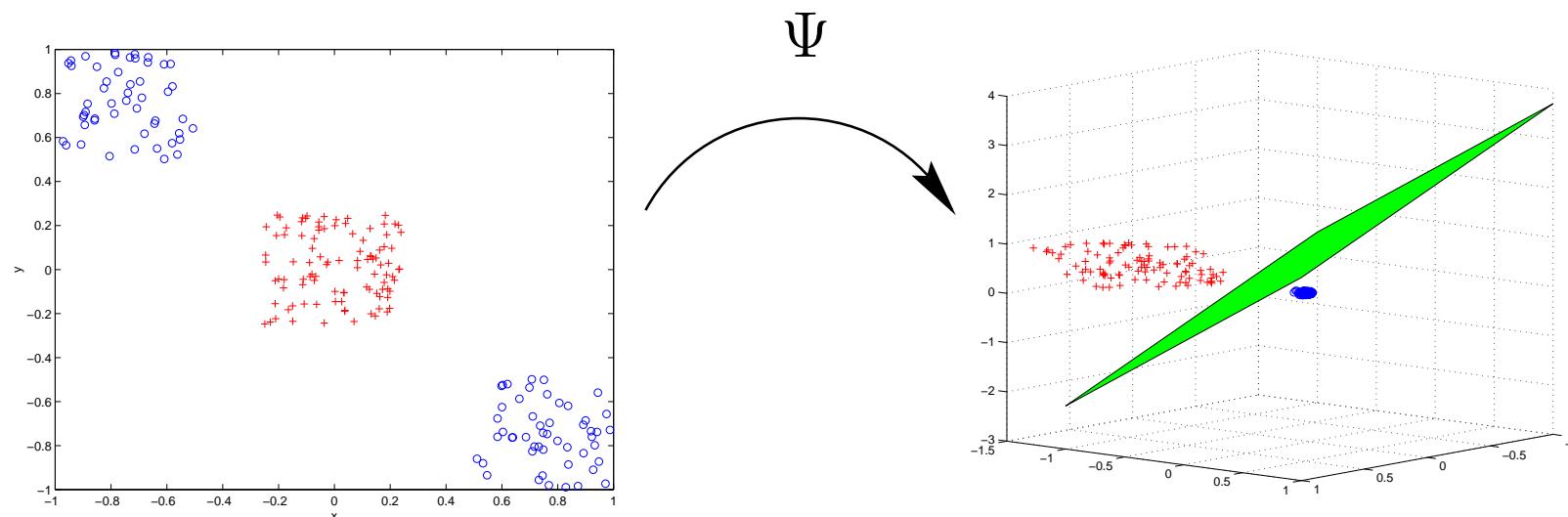
$$x \mapsto \sum_t \alpha_t y_t x_t x + b$$

- Training examples  $x_t$  with  $\alpha_t \neq 0$  are **support vectors**.



# Non Linear SVMs

- Project the data into a **higher dimensional space**: it should be easier to separate the two classes.
- Given a function  $\Psi : \mathbb{R}^d \rightarrow F$ , work with  $\Psi(x_t)$  instead of working with  $x_t$ .



# The Kernel Trick

---

- Note that we have only **dot products**  $\Psi(x_s)\Psi(x_t)$  to compute.
- Unfortunately, it could be expensive in a high dimensional space.
- Use instead a **kernel**: a function  $(x, z) \mapsto k(x, z)$  which represents a dot product in a “hidden” feature space.

$$k(x, z) = \Psi(x)\Psi(z)$$

- Example: instead of

$$\Psi(x) = \begin{pmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{pmatrix}$$

use

$$k(x, z) = (xz)^2$$

# Common Kernels

---

- Polynomial:

$$k(x, z) = (u x z + v)^p \quad (u \in \mathbb{R}, v \in \mathbb{R}, p \in \mathbb{N}_+^*)$$

- Gaussian:

$$k(x, z) = \exp\left(-\frac{\|x - z\|^2}{2\sigma^2}\right) \quad (\sigma \in \mathbb{R}_+^*)$$

- ⚠ The function

$$k(x, z) = \tanh(u x z + v)$$

is not a kernel!

# Final Abstract

---

- Choose a kernel  $k()$ .
- Minimize

$$\alpha \mapsto \frac{1}{2} \alpha^T Q \alpha - \alpha^T 1$$

where

$$Q_{ij} = y_i y_j k(x_i, x_j)$$

Under the constraints

$$0 \leq \alpha_t \leq C \text{ and } \sum_t \alpha_t y_t = 0$$

- For  $0 < \alpha_t < C$ , compute  $b$  using

$$1 - y_t \left[ \sum_s \alpha_s y_s k(x_s, x_t) + b \right] = 0$$

# Final Abstract

---

- The decision function will be

$$x \mapsto \text{sign} \left( \sum_t \alpha_t y_t k(x_t, x) + b \right)$$

# Facts to Remember

---

- SVMs **maximize the margin** (*in the feature space*)
- Use the **soft margin** trick
- Project the data into a **higher dimensional space** for non-linear relations
- **Kernels** simplify the computation
- A **Lagrangian** method leads to a “nice” **quadratic minimization** problem **under constraints**.

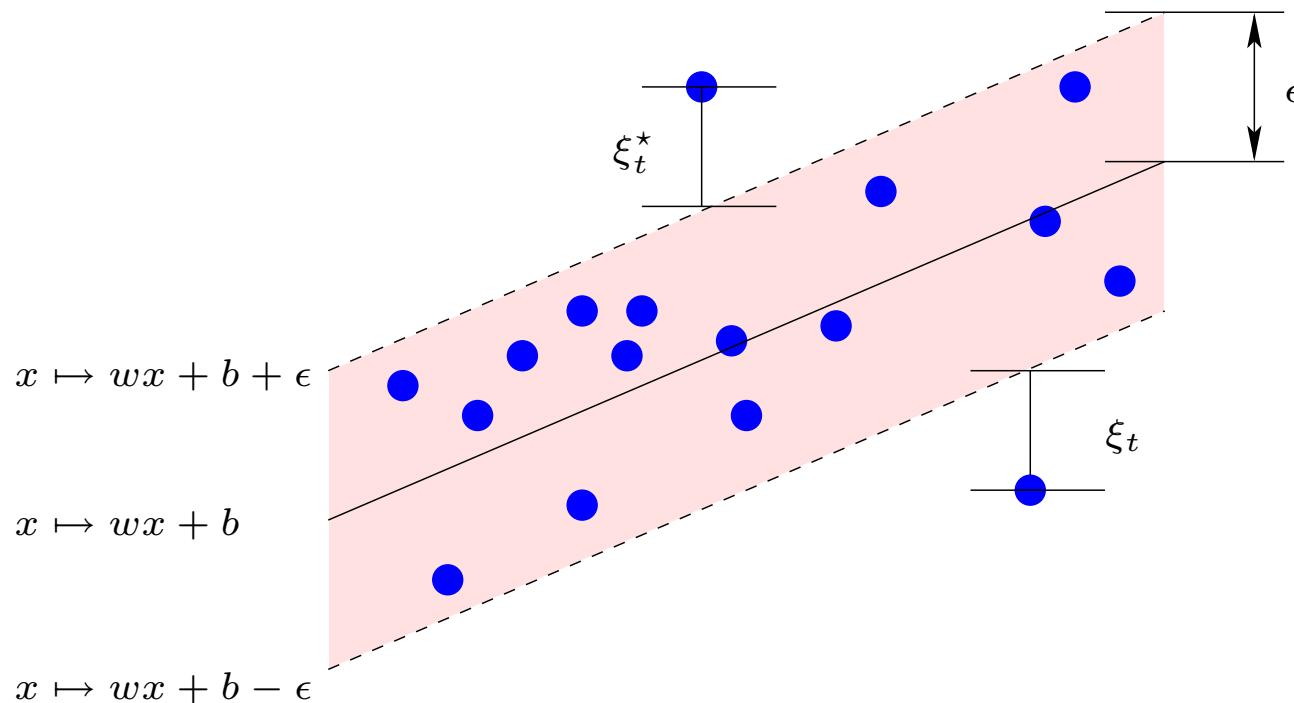
# SVMs in Practice

---

- In order to tune the **capacity**, the kernel is the most important parameter to choose.
  - Polynomial kernel: increasing the degree will increase the capacity.
  - Gaussian kernel: increasing  $\sigma$  will decrease the capacity.
- Tune  $C$ , the trade-off between the margin and the errors.
  - For non-noisy data sets,  $C$  usually has not much influence.
  - Carefully choose  $C$  for noisy data sets: small values usually give better results.

# Two Bonus Slides: SVMs in Regression (1/2)

- We are looking for an hyperplane  $x \mapsto wx + b$  such that...



## Two Bonus Slides: SVMs in Regression (2/2)

---

- We would like to minimize

$$\frac{1}{2} \|w\|^2 + C \sum_t |wx_t + b - y_t|_\epsilon$$

where

$$|u|_\epsilon = \max(0, |u| - \epsilon)$$

- “Epsilon insensitive loss”: we “ignore” errors lower than  $\epsilon$ .
- Equivalent to minimize

$$\frac{1}{2} \|w\|^2 + C \sum_t (\xi_t + \xi_t^*)$$

under the constraints

$$(wx_t + b) - y_t \leq \epsilon + \xi_t$$

$$y_t - (wx_t + b) \leq \epsilon + \xi_t^*$$

$$\xi_t, \xi_t^* \geq 0$$

# Other kernel methods

---

- Multi-class SVMs
- Kernel PCA
- Gaussian Processes
- <http://www.kernel-machines.org>