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Support Vector Machines

. The aim of SVMs

Linear SVMs and soft margin
Solving the SVMs problem using a Lagrangian method

Kernel trick

Support Vector Regression
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SVMs in Two Slides (1/2)
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SVMs in Two Slides (2/2)

ENTERING MATHEMATICAL AREA
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Few Notations (1/2)

Training set:
(T, yt)e=r1.. 7 € R x {—1,1}

We would like to find one hyperplane
wr+b=0 (weR? beR)

which separates the two classes and maximizes the margin.
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Few Notations (2/2)

o©
cwr+b=1
wx +b=20
s wr+b=-1
O
®e
®
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My First Equation

Margin to mazrimaize:

dist(wz + b =1, wx+b:—1):m

We would like to minimize:

Jw]®
2

J(w, b) =
Under the constraints:

ys(wzy +b) > 1 Vi
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A Bug

This minimization problem does not have any solution if the two

classes are not separable.
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Fixing The Bug: “Soft” Margin

Relax the constraints: use a soft margin instead of a hard

margin.
We would like to minimize:

0

T
J(w, b, &) ="~ +C) &
t=1

Under the constraints:
yt(’th —|— b) Z 1 — ft \V/t

& >0Vt
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Two Slides on Lagrangian Method (1/2)

We want to find uw such that:

J(u) = 1}125 J(v)

uelU={veR"” : p;(v) <0 Vi}

Introduce the Lagrangian:

L(v, p) = J(v) + Zui pi(v) (i =0)
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Two Slides on Lagrangian Method (2/2)

Theorem: If (u, A\) is a saddle point of the Lagrangian L, then

(u, M) is a solution of the constrained minimization problem.

(u, M) is a saddle point of the function L if u is a minimum for

the function v — L(v, A) and A is a maximum for the function

i L{u, 1),
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Back to SVMs

Our Lagrangian:

L(wa b7 57 v, ,LL) (w b f _l_zat 1_€t yt th"_b Z:utgt

H’wH

+ngt—|—2at1—§t yi(wry + )] Zﬂtft

(y >0 and p; > 0)

Look for (w, b, £) minimum of L:

oL

8—10:0 @w:;atytxt
OL

%:O = zt:()étytzo
oL

85_0 <:>O—Oét—,LLt—O
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The Nightmare Continues...

Insert in the Lagrangian:

1
L = Zs: a— ; Qs YsYt TsTy

OSO&tSO

Z@tyt =0
t
w = Z@t’yt Tt
t

Look for («, p#) maximum of L:
ai[l =& —y(wz, +0)] = 0
e = 0
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Yes!

Finaly, we “just” have to minimize

1
a §aTQa —atl

where
Qij = YilYj Til;

Under the constraints

0 < ap < C and Zatyt:()
/

Then we obtain w and b with
w = Z Yt Tt
!

o[l — & — ys(wzy +b)] = 0
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Support Vector Etymology

Note that the decision function could be rewritten as:

T Zoztytajtaj+b
¢

Training examples x; with a; # 0 are support vectors.
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Non Linear SVMs

o Project the data into a higher dimensional space: it should be

easier to separate the two classes.

o Given a function ¥ : R% — F, work with U(z;) instead of

working with x;.
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The Kernel Trick

Note that we have only dot products ¥(zs)¥(xz;) to compute.

Unfortunately, it could be expensive in a high dimensional

space.

Use instead a kernel: a function (x, z) — k(x, z) which

represents a dot product in a “hidden” feature space.
k(xz, z) = V(x)¥(z2)

Example: instead of

2
L7

U(z) = | V2m129
5
use

k(z, 2) = (22)?
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Common Kernels

Polynomial:
k(z, z) = (uzz+v)? (ueR, veR, peNl)

Gaussian:

|z — 2|

k(x, z) = exp (— 53 > (c € RY)

/\ The function
k(x, z) = tanh(u zz + v)

is not a kernel!
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Final Abstract

Choose a kernel k().
Minimize .
a §aTQa —atl

where
Qii = yiy; k(xi, x;)

Under the constraints

0 < ap < C and Zatyt:()
t

For 0 < ay < C, compute b using

1=y Zasysk(xs,xt)+b =

Support Vector Machines
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Final Abstract

The decision function will be

x + sign <Z Yy k(xe, x) + b)
/
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Facts to Remember

SVMs maximize the margin (in the feature space)
Use the soft margin trick

Project the data into a higher dimensional space for non-linear

relations
Kernels simplify the computation

A Lagrangian method leads to a “nice” quadratic

minimization problem under constraints.

Support Vector Machines

21



SV Ms in Practice

In order to tune the capacity, the kernel is the most important

parameter to choose.

Polynomial kernel: increasing the degree will increase the

capacity.
Gaussian kernel: increasing o will decrease the capacity.
Tune C', the trade-off between the margin and the errors.

For non-noisy data sets, C' usually has not much influence.

Carefully choose C' for noisy data sets: small values usually
give better results.
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Two Bonus Slides: SVMs in Regression (1/2)

We are looking for an hyperplane x — wx + b such that...

xr+— wxr +b—¢€
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Two Bonus Slides: SVMs in Regression (2/2)

We would like to minimize

1
Sl + O3 fwre + b= yil.
t

where

[ufe = max (0, [u] —€)

“Epsilon insensitive loss”: we “ignore” errors lower than e.

Equivalent to minimize
1
Sl +C 3 + &)
t

under the constraints
(wzy +b) =y < e+ &

Yy — (wry +b) < e+ &
gtagzzo
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Other kernel methods

Multi-class SVMs
Kernel PCA

Gaussian Processes

http://www.kernel-machines.org
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