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Reminder: Basics on Probabilities

A few basic equalities that are often used:

1. ( conditional probabilities)

P (A, B) = P (A|B) · P (B)

2. ( Bayes rule)

P (A|B) =
P (B|A) · P (A)

P (B)

3. If (
⋃

Bi = Ω) and ∀i, j 6= i (Bi

⋂

Bj = ∅) then

P (A) =
∑

i

P (A, Bi)
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What is a Gaussian Mixture Model

• A Gaussian Mixture Model (GMM) is a distribution

• The likelihood given a Gaussian distribution is

N (x; µ, Σ) =
1

(2π)
|x|
2

√

|Σ|
exp

(

−
1

2
(x − µ)T Σ−1(x − µ)

)

where µ is the mean and Σ is the covariance matrix of the

Gaussian. Σ is often diagonal.

• The likelihood given a GMM is

p(x) =
N

∑

i=1

wi · N (x; µ, Σ)

where N is the number of Gaussians and wi is the weight of

Gaussian i, with
∑

i

wi = 1 and ∀i : wi ≥ 0
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Characteristics of a GMM

• While ANNs are universal approximators of functions,

• GMMs are universal approximators of densities.

(as long as there are enough Gaussians of course)

• Even diagonal GMMs are universal approximators.

• Full rank GMMs are not easy to handle: number of parameters

is the square of the number of dimensions.

• GMMs can be trained by maximum likelihood using an efficient

algorithm: Expectation-Maximization.
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Basics of Expectation-Maximization

• Objective: maximize the likelihood p(X ; θ) of the data X

drawn from an unknown distribution, given the model

parameterized by θ:

θ∗ = arg max
θ

p(X |θ) = arg max
θ

n
∏

p=1

p(xp|θ)

• Basic ideas of EM:

◦ Introduce a hidden variable such that its knowledge would

simplify the maximization of p(X ; θ)

◦ At each iteration of the algorithm:

◦ E-Step: estimate the distribution of the hidden variable

given the data and the current value of the parameters

◦ M-Step: modify the parameters in order to maximize the

joint distribution of the data and the hidden variable

Gaussian Mixture Models and EM 6



EM for GMM (Graphical View, 1)

Hidden variable: for each point, which Gaussian generated it?

A

B
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EM for GMM (Graphical View, 2)

E-Step: for each point, estimate the probability the each Gaussian

generated it

A

B

P(A) = 0.6
P(B) = 0.4

P(A) = 0.2
P(B) = 0.8
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EM for GMM (Graphical View, 3)

M-Step: modify the parameters according to the hidden variable to

maximize the likelihood of the data (and the hidden variable)

A

B

P(A) = 0.6
P(B) = 0.4

P(A) = 0.2
P(B) = 0.8
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EM: More Formally

• Let us call the hidden variable Q.

• Let us consider the following auxiliary function:

A(θ, θs) = EQ[log p(X, Q|θ)|X, θs]

• It can be shown that maximizing A

θs+1 = arg max
θ

A(θ, θs)

always increases the likelihood of the data p(X |θs+1), and a

maximum of A corresponds to a maximum of the likelihood.
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EM: Proof of Convergence

• First let us develop the auxiliary function:

A(θ, θs) = EQ[log p(X, Q|θ)|X, θs]

=
∑

Q

P (Q|X, θs) log p(X, Q|θ)

=
∑

Q

P (Q|X, θs) log(P (Q|X, θ) · p(X |θ))

=





∑

Q

P (Q|X, θs) log P (Q|X, θ)



 +





∑

Q

P (Q|X, θs) log p(X |θ)





=





∑

Q

P (Q|X, θs) log P (Q|X, θ)



 + log p(X |θ)
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EM: Proof of Convergence

• then if we evaluate it at θs

A(θs, θs) =





∑

Q

P (Q|X, θs) log P (Q|X, θs)



 + log p(X |θs)

• the difference between two consecutive log likelihoods of the

data can be written as

log p(X |θ) − log p(X |θs) =

A(θ, θs) − A(θs, θs) +
∑

Q

P (Q|X, θs) log
P (Q|X, θs)

P (Q|X, θ)

• hence,

◦ since the last part of the equation is a Kullback-Leibler

divergence which is always positive or null,

◦ if A increases, the log likelihood of the data also increases

◦ Moreover, one can show that when A is maximum, the

likelihood of the data is also at a maximum.
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EM for GMM: Hidden Variable

• For GMM, the hidden variable Q will describe which Gaussian

generated each example.

• If Q was observed, then it would be simple to maximize the

likelihood of the data: simply estimate the parameters

Gaussian by Gaussian

• Moreover, we will see that we can easily estimate Q

• Let us first write the mixture of Gaussian model for one xi:

p(xi|θ) =

N
∑

j=1

P (j|θ)p(xi|j, θ)

• Let us now introduce the following indicator variable:

zi,j =







1 if Gaussian j emitted xi

0 otherwise
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EM for GMM: Auxiliary Function

• We can now write the joint likelihood of all the X and Q:

p(X, Q|θ) =
n

∏

i=1

N
∏

j=1

P (j|θ)zi,jp(xi|j, θ)
zi,j

• which in log gives

log p(X, Q|θ) =
n

∑

i=1

N
∑

j=1

zi,j log P (j|θ) + zi,j log p(xi|j, θ)
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EM for GMM: Auxiliary Function

• Let us now write the corresponding auxiliary function:

A(θ, θs) = EQ[log p(X, Q|θ)|X, θs]

= EQ





n
∑

i=1

N
∑

j=1

zi,j log P (j|xi, θ) + zi,j log p(xi|θ)|X, θs





=
n

∑

i=1

N
∑

j=1

EQ[zi,j |X, θs] log P (j|xi, θ) + E[zi,j |X, θs] log p(xi|θ)
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EM for GMM: E-Step and M-Step

A(θ, θs) =
n

∑

i=1

N
∑

j=1

EQ[zi,j |X, θs] log P (j|xi, θ)+E[zi,j|X, θs] log p(xi|θ)

• Hence, the E-Step estimates the posterior:

EQ[zi,j |X, θs] = 1 · P (zi,j = 1|X, θs) + 0 · P (zi,j = 0|X, θs)

= P (j|xi, θ
s) =

p(xi|j, θs)P (j|θs)

p(xi|θs)

• and the M-step finds the parameters θ that maximizes A,

hence searching for
∂A

∂θ
= 0

for each parameter (µj , variances σ2
j , and weights wj).

• Note however that for the weights wj , we need to enforce their

sum to 1: add a Lagrange term.
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EM for GMM: M-Step for Means

A(θ, θs) =
n

∑

i=1

N
∑

j=1

EQ[zi,j |X, θs] log P (j|xi, θ)+E[zi,j|X, θs] log p(xi|θ)

Let us develop ∂A
∂θ

= 0 for µj

∂A

∂µj

=
n

∑

i=1

∂A

∂ log p(xi|θ)

∂ log p(xi|θ)

∂µj

=
n

∑

i=1

P (j|xi, θ
s)

∂ log p(xi|θ)

∂µj

=

n
∑

i=1

P (j|xi, θ
s)

∂ log p(xi|θ)

∂p(xi|θ)

∂p(xi|θ)

∂p(xi|j, θ)

∂p(xi|j, θ)

∂ log p(xi|j, θ)

∂ log p(xi|j, θ)

∂µj

=
n

∑

i=1

P (j|xi, θ
s) ·

1

p(xi|θ)
· wj · p(xi|j, θ) ·

(xi − µj)

σ2
j

= 0
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EM for GMM: M-Step for Means

n
∑

i=1

P (j|xi, θ
s) ·

1

p(xi|θ)
· wj · p(xi|j, θ) ·

(xi − µj)

σ2
j

= 0

=⇒ (removing constant terms in the sum)

n
∑

i=1

P (j|xi, θ
s) ·

p(xi|j, θ)

p(xi|θ)
· xi −

n
∑

i=1

P (j|xi, θ
s) ·

p(xi|j, θ)

p(xi|θ)
· µ̂j = 0

n
∑

i=1

P (j|xi, θ
s) ·

p(xi|j, θ)

p(xi|θ)
· xi

n
∑

i=1

P (j|xi, θ
s) ·

p(xi|j, θ)

p(xi|θ)

= µ̂j

Gaussian Mixture Models and EM 18



EM for GMM: Update Rules

• End results:

µ̂j =

n
∑

i=1

xi · P (j|xi, θ
s) ·

p(xi|j, θ)

p(xi|θ)
n

∑

i=1

P (j|xi, θ
s) ·

p(xi|j, θ)

p(xi|θ)

(σ̂j)
2 =

n
∑

i=1

(xi − µ̂j)
2 · P (j|xi, θ

s) ·
p(xi|j, θ)

p(xi|θ)
n

∑

i=1

P (j|xi, θ
s) ·

p(xi|j, θ)

p(xi|θ)

ŵj =

n
∑

i=1

wj · P (j|xi, θ
s) ·

p(xi|j, θ)

p(xi|θ)

N
∑

k=1

n
∑

i=1

wk · P (k|xi, θ
s) ·

p(xi|k, θ)

p(xi|θ)
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Initialization

• EM is an iterative procedure that is very sensitive to initial

conditions!

• Start from trash → end up with trash.

• Hence, we need a good and fast initialization procedure.

• Often used: K-Means.

• Other options: hierarchical K-Means, Gaussian splitting.
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