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Reminder: Basics on Probabilities

A few basic equalities that are often used:

1. (conditional probabilities)
P(A,B)= P(A|B) - P(B)

2. (Bayes rule)
P(A|B) =

P(A)=) P(A,B)
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What is a Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a distribution

The likelihood given a Gaussian distribution is

1 1 Ty —1(, _
N(x,u,z)—(%)QmeXp(—§(w—u) I u))

where p is the mean and X is the covariance matrix of the

Gaussian. X is often diagonal.

The likelihood given a GMM is

sz (5, 22)

where N is the number of Gaussians and w; is the weight of
Gaussian ¢, with

ZwizlandVi:wiZO

Gaussian Mixture Models and EM



Characteristics of a GMM

While ANNs are universal approximators of functions,

GMMs are universal approximators of densities.

(as long as there are enough Gaussians of course)
Even diagonal GMMs are universal approximators.

Full rank GMMs are not easy to handle: number of parameters
is the square of the number of dimensions.

GMDMSs can be trained by maximum likelihood using an efficient
algorithm: Expectation-Maximization.
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Basics of Expectation-Maximization

Objective: maximize the likelihood p(X; ) of the data X
drawn from an unknown distribution, given the model

parameterized by 6:

0" = arg m@axp(X]H) = arg meaxpl;[lp(xp]H)

Basic ideas of EM:

Introduce a hidden variable such that its knowledge would
simplify the mazximization of p(X; @)
At each iteration of the algorithm:
E-Step: estimate the distribution of the hidden variable
given the data and the current value of the parameters

M-Step: modify the parameters in order to maximize the
joint distribution of the data and the hidden variable
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EM for GMM (Graphical View, 1)

Hidden variable: for each point, which Gaussian generated it?
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EM for GMM (Graphical View, 2)

E-Step: for each point, estimate the probability the each Gaussian
generated it

P(A) =06 o
P(B) =04 e
o o o
® o o P(A)=0.2
P(B) =0.8
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EM for GMM (Graphical View, 3)

M-Step: modify the parameters according to the hidden variable to
maximize the likelihood of the data (and the hidden variable)

® o e P(A) =0.2
P(B) =0.8
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EM: More Formally

Let us call the hidden variable ().

Let us consider the following auxiliary function:
A(6,6%) = Eqllog p(X, Q16)|X, 6
It can be shown that maximizing A
0° T = arg max A(6,6°%)

always increases the likelihood of the data p(X|0°T!), and a

maximum of A corresponds to a maximum of the likelihood.
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First let us develop the auxiliary function:

A(0,6%)

EM: Proof of Convergence

Eqllog p(X, QI0)|X, 07

Y P(QIX,6°)logp(X,Ql6)
Q

> P(QIX,6°)log(P(Q| X, 0) - p(X|6))
Q

Y P(QIX,6°)log P(Q|X,0)
Q

Y P(QIX,6°)1og P(Q|X,0)
Q

_|_

+ log p(X|9)

" P(QIX, 6°) log p(X|6)

Q
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EM: Proof of Convergence

then if we evaluate it at 6°

A(6°,6°) = | Y P(QIX,0%)1og P(Q|X,6%)| + log p(X|6°)
Q

the difference between two consecutive log likelihoods of the
data can be written as

logp(X|0) —logp(X|0°) =
P(Q|X,0°)

A9, 07) = A8,07) + >_ P(QIX,6%) log oy
Q 9

hence,

since the last part of the equation is a Kullback-Leibler
divergence which is always positive or null,

if A increases, the log likelihood of the data also increases

Moreover, one can show that when A is maximum, the

likelihood of the data is also at a maximum.
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EM for GMM: Hidden Variable

For GMM, the hidden variable () will describe which Gaussian
generated each example.

If ) was observed, then it would be simple to maximize the
likelihood of the data: simply estimate the parameters
Gaussian by Gaussian

Moreover, we will see that we can easily estimate @)

Let us first write the mixture of Gaussian model for one z;:
337,"9 ZP "9 le]a )

Let us now introduce the following indicator variable:

1 if Gaussian j emitted z;

Ri,j .
0 otherwise
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EM for GMM: Auxiliary Function

We can now write the joint likelihood of all the X and Q:

p(X,Ql0) = HHP (510)79 p(as]4, 0) 7

1=19=1
which in log gives
n N
logp(X,Q10) =) )z ;log P(j]0) + 2 ; log p(as3, 6)
i=1 j=1
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EM for GMM: Auxiliary Function

Let us now write the corresponding auxiliary function:

A(6,6%) = Egllogp(X,Ql6)|X, 6]

N

= Eq |Y_ > zijlog P(jlai,0) + 2z ;log p(x;|0)| X, 6°
i=1 j=1

n N

Z Z EQ [Zi,le, (98] 10g P(]’CEZ, 9) + E[Zi,j|X, (98] lng(Q?Z’@)
1=1 j5=1
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EM for GMM: E-Step and M-Step

N

A0,0°) =33 Bglzi 51X, 0°) log P(jlas, )+ (2.5 X, 0°] log p(a: 0)

i=1 j=1

Hence, the E-Step estimates the posterior:

EQ [Z,L',j’X, 98] = 1 P(Zi,j = HX, 98) +0- P(Zi,j — O|X, (98)
. p(xilg, 0°)P(516°)
= P 5132',6)8 ==
(J| ) p(xzws)

and the M-step finds the parameters 6 that maximizes A,

hence searching for

04 _
o0
2

for each parameter (1, variances o5,

0

and weights w; ).

Note however that for the weights w;, we need to enforce their

sum to 1: add a Lagrange term.
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EM for GMM: M-Step for Means

n N

A(0,6%) => > Eqlzi;|1X, 6°]log P(j|z;, 0)+E[z ;1 X, 0°] log p(;10)

1=1 5=1

Let us develop %—‘2 = 0 for p;

oA En: 0A 0log p(x;|0)
Op; Ologp(z;[0)  Ou,
- . . Ologp(z;|0
= 3 Pl o) 2080
i=1 Hj

_ Z P(jlz;, 0y 2108 P@il0) Op(xild) _Op(wilj,6) Ologp(wilj,6)
_ 'CEZv . .
Op(z;0)  Op(wilj,0) Olog p(xilj,0) Op;

. 1 o (@ — )
= P(jlx;, 0°)  ———— -w; - p(x;]7,0) - I =0
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EM for GMM: M-Step for Means

n

> P(jlai, 6°) -

— 1)

=0

-wj - p(il5,0) -
— p(z;]6)

—> (removing constant terms in the sum)

n - . z; ',6 n ' .
ZP(J’%,Q)'p( / )’xi - Zp(ﬂxvz,@)’
i=1 i=1

p(x;]0)
P(jlx;, 0°) - - T
2 Pk 0970 A
n . = My
P xi,es :
2 PUles )20 T
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EM for GMM: Update Rules

End results:

i'ae
Z% g . PO

g p(i[0)
B B
(6" - % : S %5’5)
3 PP Sy
o Zwﬂ (|2, 6°) - (fx|10§)
wj = Z Zw’“ . P(k|x;, 0°%) - p](jag;yj,g)@)

k=1 1=1
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Initialization

EM is an iterative procedure that is very sensitive to initial

conditions!
Start from trash — end up with trash.
Hence, we need a good and fast initialization procedure.

Often used: K-Means.

Other options: hierarchical K-Means, Gaussian splitting.
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