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Ensemble Models

1. Basics of Ensembles

2. Bagging

3. AdaBoost

4. Mixture of Experts (already seen!)
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Basics of Ensembles

• When trying to solve a problem, we generally make some

choices:

◦ family of functions, range of the hyper-parameters

◦ input representation and preprocessing

◦ precise dataset

◦ etc

• Idea: instead of making these choices, let us provide not one

but many solutions to the same problem, and let us combine

them

• Why should this be a good idea?

◦ These choices imply a variance in the expected performance

( implicit capacity).

◦ In general, combining estimates → reduces the variance →

enhances expected performance.
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Ensemble - Why Does it Work?

• It has been shown that the expected risk of the average of a set

of models is better than the average of the expected risk of

these models

• Let us consider the simplest ensemble g over models fi:

g(x) =
∑

i

αifi(x) with
∑

i

αi = 1

• The MSE risk of fi at x is ei(x) = Ey[(y − fi(x))2]

• The average risk of a model is ē(x) =
∑

i

αiei(x)

• The average risk of the ensemble is e(x) = Ey[(y − g(x))2]

• Let us define diversity di(x) = (fi(x) − g(x))2

• The average diversity is d̄(x) =
∑

i αidi(x)

• It can then be shown that e(x) = ē(x) − d̄(x)
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Bagging

• Bagging: bootstrap aggregating

• Underlying idea: part of the variance is due to the specific

choice of the training data set

• Let us create many similar training data sets,

• For each of them, let us train a new function

• The final function will be the average of each function outputs.

• How similar? using bootstrap.
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Bootstrap

• Given a data set Dn with n examples drawn from p(Z)

• A bootstrap Bi of Dn also contains n examples:

• For j = 1 → n, the jth example of Bi is drawn independently

with replacement from Dn

• Hence,

◦ some examples from Dn are in multiple copies in Bi

◦ and some examples from Dn are not in Bi

• Hypothesis: the examples were iid drawn from p(Z)

• Hence, the datasets Bi are as plausible as Dn, but drawn from

Dn instead of p(Z).
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Bagging - Algorithm

• Training:

1. Given a training set Dn, create T bootstraps Bi of Dn

2. For each bootstrap Bi, select f∗(Bi) = arg min
f∈F

R̂(f, Bi)

• Testing:

◦ Given an input x, the corresponding output ŷ is:

ŷ =
1

T

T
∑

i=1

f∗(Bi)(x)

• Analysis: if generalization error is decomposed into bias and

variance terms then bagging reduces variance.
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Bias + Variance for Bagging

Bias

Capacity

Bagging
Variance

Variance
Normal

Error
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AdaBoost

• Most popular algorithm in the family of boosting algorithms

• Boosting: the performance of simple ( weak) classifiers is

boosted by combining them iteratively.

• General combination classifier:

g(x) =
T
∑

t=1

αtft(x)

• Simplest framework: binary classification, targets = {−1, +1}

• What can we do with the following simplest requirement: each

weak classifier ft should perform better than chance
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AdaBoost - Concepts

• AdaBoost is an iterative algorithm: select ft given the

performance obtained by previous weak classifiers f1 → ft−1.

• At each time step t,

◦ Modify training sample distribution in order to favor

difficult examples (according to previous weak classifiers).

◦ Train a new weak classifier

◦ Select the new weight αt by optimizing a global criterion

• Stop when impossible to find a weak classifier satisfying the

simplest condition (being better than chance)

• Final solution is the weighted sum of all weak classifiers
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AdaBoost - Algorithm

1. inputs: Dn = {(x1, y1), · · · , (xn, yn)}

2. initialize: w
(1)
i = 1

n
for all i = 1, · · · , n

3. for t = 1, · · · , T

(a) D(t): sample n examples from Dn according to weights w(t)

(b) train classifier ft using D(t)

(c) calculate weighted training error εt of ft:

εt =
n
∑

i=1

w
(t)
i I(yi 6= ft(xi))

where I(z) = 1 if z is true, 0 otherwise

(d) calculate weight αt of weak classifier ft:

αt =
1

2
log

1 − εt

εt
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AdaBoost - Algorithm

(e) update weights of examples for next iteration:

w
(t+1)
i = w

(t)
i

exp(−αtyift(xi))

Zt

where Zt is a normalization factor such that
∑

i w
(t+1)
i = 1.

(f) if εt = 0 or εt ≥
1
2 , break: T = t − 1.

4. Final output:

g(x) =
∑

t

αt
∑

r αr

ft(x)
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AdaBoost - Analysis

• Selection of αt comes from minimizing

α∗
t = arg min

αt

n
∑

i=1

exp

(

−yi

(

αtft(xi) +
t−1
∑

s=1

αsfs(xi)

))

• Other cost functions have been proposed (such as logitboost or

arcing)

• Sampling can often be replaced by weighting

• If each weak classifier is always better than chance, then

AdaBoost can be proven to converge to 0 training error

• Even after training error is 0, generalization error continues to

improve: the margin continues to grow

• Early claims: AdaBoost does not overfit! This is false of

course...
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AdaBoost - Cost Functions

• Comparison of various cost functions related to AdaBoost:
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AdaBoost - Margin

• The AdaBoost margin is defined as the distribution of y · g(x):

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative distribution of the test margin for several iterations

1
2
3
4
5

Ensembles 15



AdaBoost - Extensions

• Multi-class classification

• Single-class classification: estimating quantiles

• Regression: transform the problem into a binary classification

task

• Localized Boosting: similar to mixtures of experts

g(x) =
T
∑

t=1

αt(x) · ft(x)

• Examples of weak classifiers:

◦ Decision trees and stumps

◦ neural networks
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