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Parametric or Not?

The space F is often characterized to be parametric or not.
Parametric: the space is very small, and characterized by a
small number of parameters.

examples: a Gaussian distribution or a linear function

big prior on the solution
Non-Parametric: the space is infinite, constrained only by the
training data

examples: K nearest neighbors, Parzen Windows

small prior on the solution

Semi-Parametric:
examples: most machine learning algorithms!

small prior on the solution, characterized by a large number
of parameters
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Histograms

For classification or regression: z = (x,y)
Let x be a k—dimensional vector

For each dimension d, divide the possible values x4 into m, bins

k
Total number of bins = H mqy
d=1

Model: compute average value (on the training set) of g

corresponding to each bin

Test: given a new example x, select the corresponding bin and

output the associated gy
Can be extended to classification and density estimation.

Capacity controlled by the total number of bins.
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Histograms (Graphical View)

r={x1,x2}

estimated value of :

1 <9 <z <7 7T < x4
ro=red | y=—3.2 y=1.5 y = 3.2
ro = blue| y = —3.2 y = 0.1 y = 0.37
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Problem: The Curse of Dimensionality (1)

First view: combinatorial explosion
What happens when the number of input dimensions grows?
The number of bins grows exponentially faster!
Most bins will get no representative training example

How can we estimate a new example that is in one of those
bins??77

In fact, even the bins with some training examples are

probably not correctly estimated...
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K Nearest Neighbors

Very simple method, no training necessary

Needed:
a training set D,, = {21, 22, -, zn} with z; = (x;, y;)
a distance function L(x1,z3). For instance, (1 — 22)?

a parameter K

For each test point x

select in D,, the K examples that are nearest to x according
to L(x,x;) and keep their index (from D,,) in {s1, -+, sk}

decision:

| K
regression: ¢ = I7e Z Ys,
i=1

K
: : L 1
classification: § = sign (E ; y8i>

Capacity controlled by K.
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K-NN (Graphical View)
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KNN - Some Remarks

What does it mean to be nearest to an example?

Often used metric: Euclidean distance

For KNN, /- is not necessary
How to select K 777
Reminder: K controls the capacity...

Hence, we can use a model selection technique
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Problem: The Curse of Dimensionality (2)

Second view: FEuclidean distance

In high dimensional spaces, the Fuclidean distance between

any two random points converges to the same value!

Moreover, all points are at the boundary of the hypersphere
containing the points.

Hence, all methods based on such distance are bound to

work on small dimensions only.
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KNN versus Parzen Windows

A Parzen window
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Parzen Windows

Very simple method, no training necessary

Needed:
a training set D, = {21,292, -+, 2n} with z; = (z;,y;)
2
a kernel function K(x1,z3). For instance, exp(— Hxl;ff”

For each test point x (or z for density estimate)

decision:

1=1

ZK(J?,ZEZ)

classification: ¢ = sign (regression estimate)

regression: y =

1 n
density estimate: p(z) = — E -
n
=1

Capacity controlled by o

Classical Models

1
K(x,x;)
o

)

12



Maximum Likelihood for Density Estimation

Given a set of examples D,, = {21, 29, -, 2}

Objective: find a distribution p(Z) that maximizes the
likelihood of future data

Select a set of distributions p(Z|f) with parameters 6.
The likelihood of D,, (all examples are iid):

n

L(D,|0) = ] [ p(=:16)

i=1
Hence we search for:
0 = ;10
arg m@axiljlp(z 0)
arg min ; og p(zi|0)
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Maximum Likelihood for Gaussians

Family of one-dimensional Gaussians with 8 = {u, o}

p(216) = — exp(—("“‘”)Q)

2mo 202

Maximum likelihood solution:

f %Zzz

1=1
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Bayes Decision

Classification: z = (z,y) € RY x {-1,1}
Given: true posterior distribution P(Y|X = x)

It can be shown that the decision

) = a ax P(Y =11 X =
y=arg max P =iX=uz)

is optimal in the sense that it minimizes the number of

classification errors.

This decision corresponds to the class maximum a posteriori
(MAP) criterion
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Why Class MAP Minimizes Error?

) = P(Y =11 X =
J arg max (Y =i|X =x)
Y =4)-P(Y =i
~ arg max px|Y =14)- P(Y =1)
ie{1,—1} p(x)
- Y =) -P(Y =i
argiel[{rffl}p(xl i) - P(Y =4)

= arg max x,Y =1
gie{l’_l}p( )

Let us select a threshold for all our decisions z = 6.

0 X
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Why Class MAP Minimizes Error?

The probabilities of error are

plerrorjlx >0, Y =—1) = 1—plax>6Y =-1)
= / plx,Y = —1)
x<6
plerrorjlx < 0,Y =1) = 1—-plxz<0,Y =1)

Which 6 corresponds to the break-even point?
ple>0,Y=—-1)=plz<0Y =1 =

p(SIZ,Y — _1) :p(ZC,Y — 1)

DIAP Classical Models
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Bayes Classifiers

Goal: take the decision based on the MAP criterion:

o V. PV g
J argéé{[q?}l}p(w! i) - P(Y =1)

Hence, you need to estimate:
the conditional density p(x|Y = 1) for each class 4

the class prior P(Y = i) for each class i
Good: each class is estimated independently
Bad: you learn unnecessary relations

This technique is nevertheless often used in speech processing
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Clustering by K-Means

Given a set of examples D,, = {21, 29, -, 2}

Search for K prototypes px of disjoint subsets Si of D,, in

order to minimize

L=3 Y Y -

k=1j€S, i

h

where 2% is the i coordinate of example z;, and py, 1s the

J
mean of the examples in subset S}:

1
= — 24

JESkK

We could also use another distance metric than Euclidean...

(as long as it is a true distance!)
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Batch and Stochastic K-Means

Initialization: select randomly K examples z; in D,, as initial

values of each uy

At each batch iteration:

For each prototype ui, put in the emptied set S the
examples of D,, that are closer to u;, than to any other ;.

Re-compute the value of each uj as the average of the

examples in S}.
The algorithm stops when no prototype moves anymore.
It can be shown that the K-Means criterion will never increase.

A stochastic version of K-Means can also be derived: given a

small n, for each example z; move the nearest pj as follows:

pe = pr + 125 — pr)
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K-Means (Graphical View 1)
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K-Means (Graphical View 2)
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K-Means (Graphical View 3)
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K-Means - Some Remarks

As for KNN, we can change the metric

For instance, we can normalize the data

How to select K 777

Reminder: as for KNN, K controls the capacity...
Hence, we can use a model selection technique

Note: K-Means is quite sensitive to initialization. Other

heuristics exist, or you can retrain many times...

Application: feature extraction

represent each example z by the index of the closest

prototype
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