

*An Introduction to
Statistical Machine Learning
- Classical Models -*

Samy Bengio

bengio@idiap.ch

Dalle Molle Institute for Perceptual Artificial Intelligence (IDIAP)
CP 592, rue du Simplon 4
1920 Martigny, Switzerland
<http://www.idiap.ch/~bengio>

Classical Models

1. Parametric or Not?
2. Histograms
3. Problem: Curse of Dimensionality
4. K Nearest Neighbors
5. Parzen Windows
6. Maximum Likelihood Approach
7. Bayes Decision and Bayes Classifiers
8. K-Means

Parametric or Not?

- The space \mathcal{F} is often characterized to be **parametric** or not.
- **Parametric**: the space is very small, and characterized by a small number of parameters.
 - examples: a Gaussian distribution or a linear function
 - big prior on the solution
- **Non-Parametric**: the space is infinite, constrained only by the training data
 - examples: K nearest neighbors, Parzen Windows
 - small prior on the solution
- **Semi-Parametric**:
 - examples: most machine learning algorithms!
 - small prior on the solution, characterized by a large number of parameters

Histograms

- For classification or regression: $z = (x, y)$
- Let x be a k -dimensional vector
- For each dimension d , divide the possible values x_d into m_d bins
- Total number of bins = $\prod_{d=1}^k m_d$
- **Model**: compute average value (on the training set) of \hat{y} corresponding to each bin
- **Test**: given a new example x , select the corresponding bin and output the associated \hat{y}
- Can be extended to **classification** and **density estimation**.
- Capacity controlled by the **total number of bins**.

Histograms (Graphical View)

- $x = \{x_1, x_2\}$
- estimated value of \hat{y} :

	$x_1 < 5$	$5 \leq x_1 < 7$	$7 \leq x_1$
$x_2 = \text{red}$	$\hat{y} = -3.2$	$\hat{y} = 1.5$	$\hat{y} = 3.2$
$x_2 = \text{blue}$	$\hat{y} = -3.2$	$\hat{y} = 0.1$	$\hat{y} = 0.37$

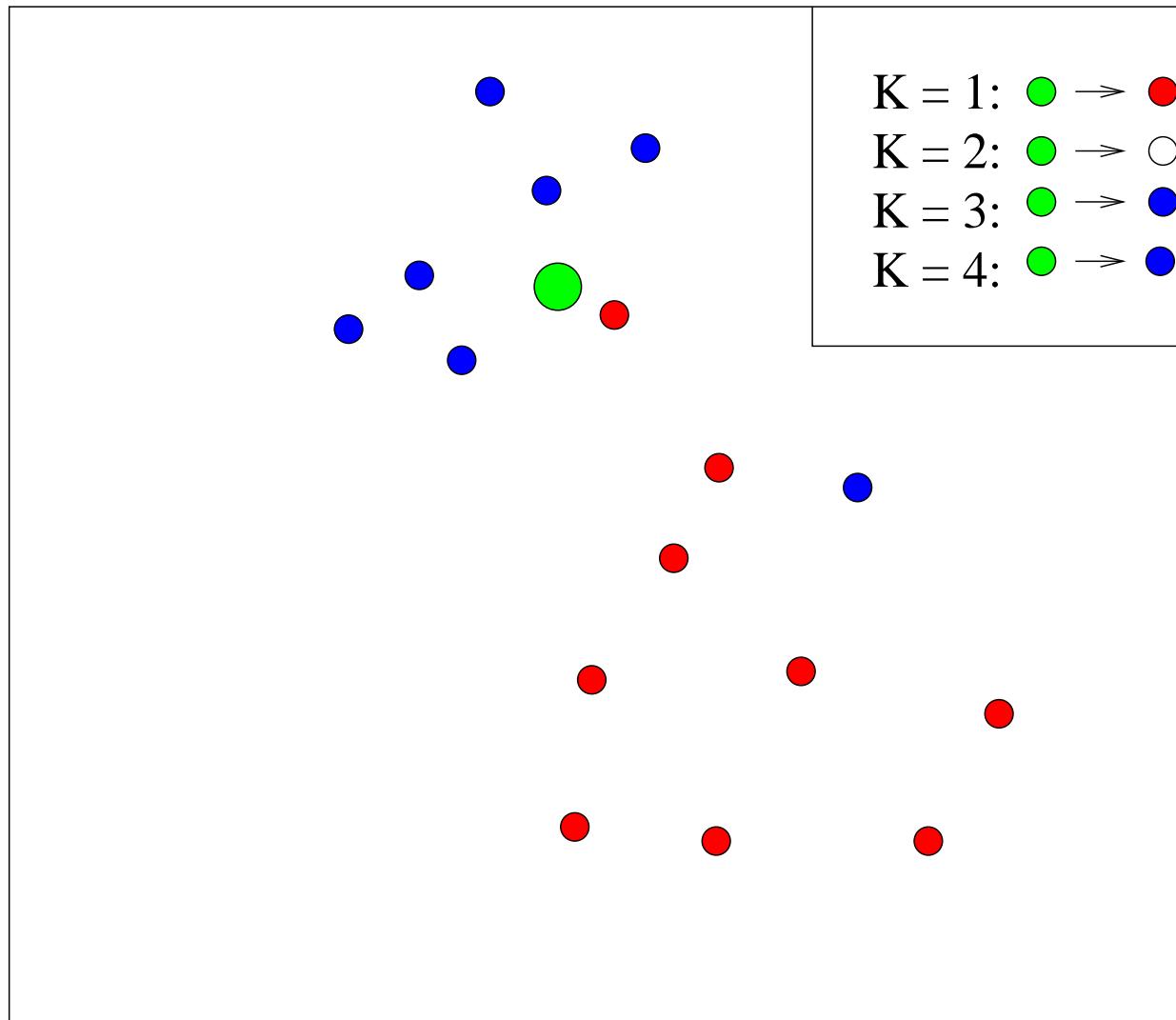
Problem: The Curse of Dimensionality (1)

- First view: **combinatorial explosion**
 - What happens when the number of input dimensions grows?
 - The number of bins grows **exponentially** faster!
 - Most bins will get **no representative** training example
 - How can we estimate a new example that is in one of those bins????
 - In fact, even the bins with some training examples are probably not correctly estimated...

K Nearest Neighbors

- Very simple method, **no training necessary**
- Needed:
 - a training set $D_n = \{z_1, z_2, \dots, z_n\}$ with $z_i = (x_i, y_i)$
 - a distance function $L(x_1, x_2)$. For instance, $(x_1 - x_2)^2$
 - a parameter K
- For each test point x
 - **select** in D_n the K examples that are nearest to x according to $L(x, x_i)$ and keep their index (from D_n) in $\{s_1, \dots, s_K\}$
 - **decision:**
 - regression: $\hat{y} = \frac{1}{K} \sum_{i=1}^K y_{s_i}$
 - classification: $\hat{y} = \text{sign} \left(\frac{1}{K} \sum_{i=1}^K y_{s_i} \right)$
- Capacity controlled by K .

K-NN (Graphical View)



KNN - Some Remarks

- What does it mean to be **nearest** to an example?
- Often used metric: **Euclidean distance**

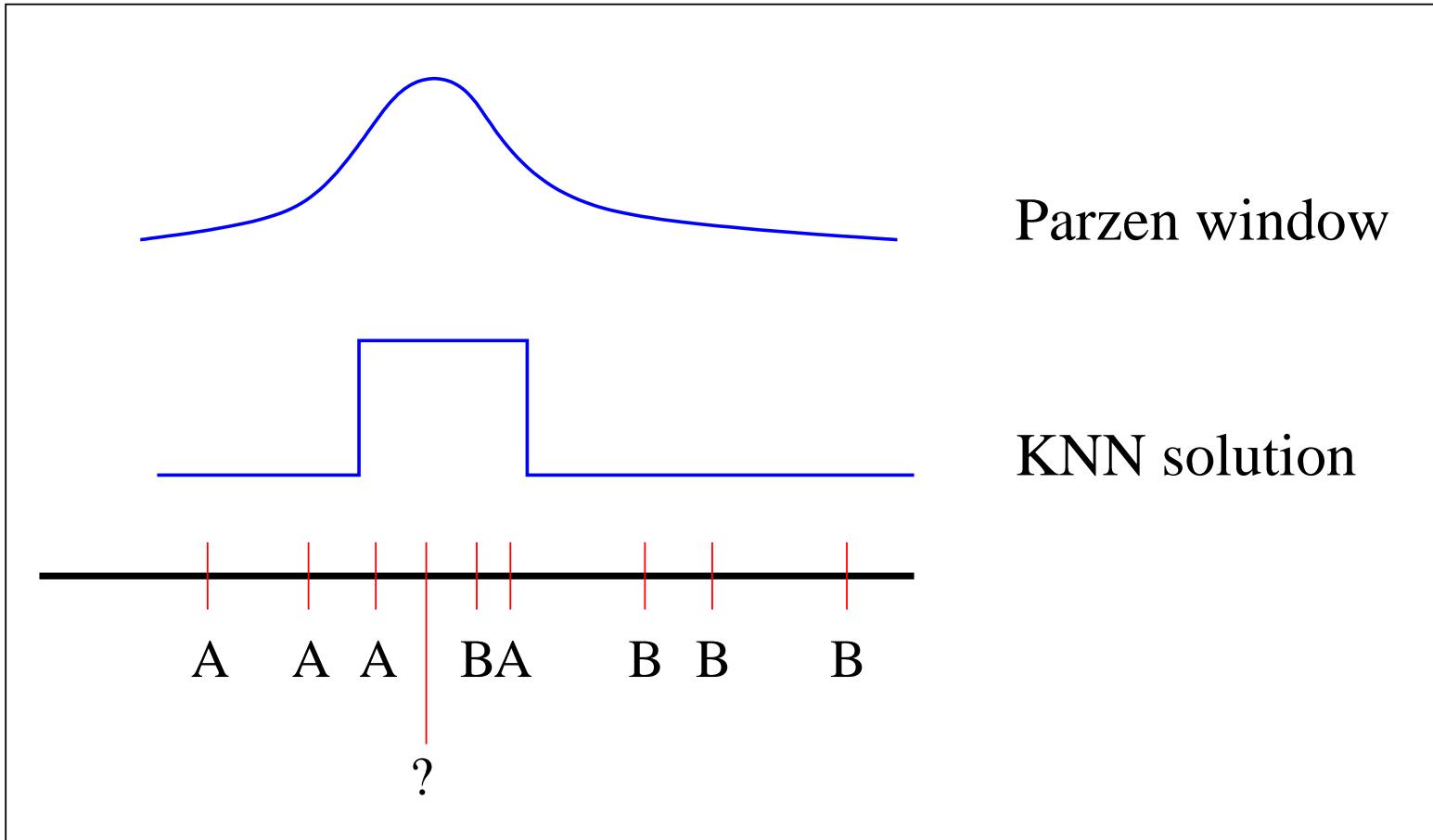
$$d = \sqrt{\sum_i (x_i - t_i)^2}$$

- For KNN, $\sqrt{\cdot}$ is not necessary
- How to select K ???
- Reminder: K controls the **capacity**...
- Hence, we can use a **model selection** technique

Problem: The Curse of Dimensionality (2)

- Second view: Euclidean distance
 - In high dimensional spaces, the Euclidean distance between any two random points **converges to the same value!**
 - Moreover, all points are at the boundary of the hypersphere containing the points.
 - Hence, all methods based on such distance are bound to work on small dimensions only.

KNN versus Parzen Windows



Parzen Windows

- Very simple method, **no training necessary**
- Needed:
 - a training set $D_n = \{z_1, z_2, \dots, z_n\}$ with $z_i = (x_i, y_i)$
 - a kernel function $K(x_1, x_2)$. For instance, $\exp(-\frac{\|x_1 - x_2\|^2}{2\sigma^2})$
- For each test point x (or z for density estimate)
 - **decision:**
$$\sum_{i=1}^n y_i K(x, x_i)$$
 - regression: $\hat{y} = \frac{\sum_{i=1}^n y_i K(x, x_i)}{\sum_{i=1}^n K(x, x_i)}$
 - classification: $\hat{y} = \text{sign}(\text{regression estimate})$
 - density estimate: $\hat{p}(z) = \frac{1}{n} \sum_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} K(x, x_i)$
- Capacity controlled by σ

Maximum Likelihood for Density Estimation

- Given a set of examples $D_n = \{z_1, z_2, \dots, z_n\}$
- Objective: find a distribution $p(Z)$ that **maximizes the likelihood** of future data
- Select a set of distributions $p(Z|\theta)$ with parameters θ .
- The likelihood of D_n (all examples are **iid**):

$$\mathcal{L}(D_n|\theta) = \prod_{i=1}^n p(z_i|\theta)$$

Hence we search for:

$$\begin{aligned}\theta^* &= \arg \max_{\theta} \prod_{i=1}^n p(z_i|\theta) \\ &= \arg \min_{\theta} - \sum_{i=1}^n \log p(z_i|\theta)\end{aligned}$$

Maximum Likelihood for Gaussians

- Family of one-dimensional Gaussians with $\theta = \{\mu, \sigma\}$

$$\hat{p}(z|\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(z-\mu)^2}{2\sigma^2}\right)$$

- Maximum likelihood solution:

- $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n z_i$

- $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (z_i - \hat{\mu})^2$

Bayes Decision

- Classification: $z = (x, y) \in \mathbb{R}^d \times \{-1, 1\}$
- Given: **true posterior distribution** $P(Y|X = x)$
- It can be shown that the decision

$$\hat{y} = \arg \max_{i \in \{1, -1\}} P(Y = i|X = x)$$

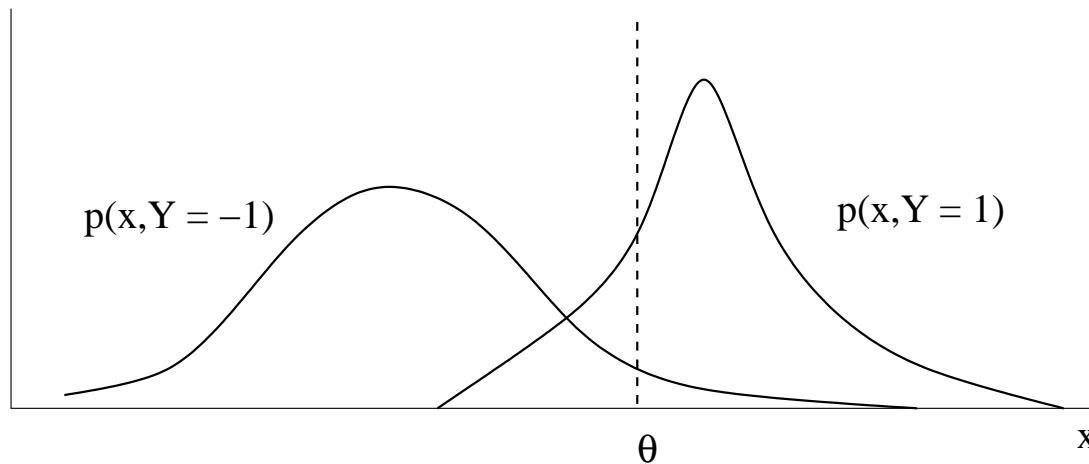
is optimal in the sense that it **minimizes** the number of classification **errors**.

- This decision corresponds to the **class maximum a posteriori** (MAP) criterion

Why Class MAP Minimizes Error?

$$\begin{aligned}\hat{y} &= \arg \max_{i \in \{1, -1\}} P(Y = i | X = x) \\ &= \arg \max_{i \in \{1, -1\}} \frac{p(x | Y = i) \cdot P(Y = i)}{p(x)} \\ &= \arg \max_{i \in \{1, -1\}} p(x | Y = i) \cdot P(Y = i) \\ &= \arg \max_{i \in \{1, -1\}} p(x, Y = i)\end{aligned}$$

- Let us select a threshold for all our decisions $x = \theta$.



Why Class MAP Minimizes Error?

- The probabilities of error are

$$\begin{aligned} p(\text{error} | x > \theta, Y = -1) &= 1 - p(x > \theta, Y = -1) \\ &= \int_{x < \theta} p(x, Y = -1) \end{aligned}$$

$$\begin{aligned} p(\text{error} | x < \theta, Y = 1) &= 1 - p(x < \theta, Y = 1) \\ &= \int_{x > \theta} p(x, Y = 1) \end{aligned}$$

- Which θ corresponds to the *break-even* point?

$$p(x > \theta, Y = -1) = p(x < \theta, Y = 1) \implies$$

$$p(x, Y = -1) = p(x, Y = 1)$$

Bayes Classifiers

- Goal: take the decision based on the MAP criterion:

$$\hat{y} = \arg \max_{i \in \{1, -1\}} p(x|Y = i) \cdot P(Y = i)$$

- Hence, you need to estimate:
 - the conditional density $p(x|Y = i)$ for each class i
 - the class prior $P(Y = i)$ for each class i
- Good: each class is estimated independently
- Bad: you learn unnecessary relations
- This technique is nevertheless often used in speech processing

Clustering by K-Means

- Given a set of examples $D_n = \{z_1, z_2, \dots, z_n\}$
- Search for K prototypes μ_k of disjoint subsets S_k of D_n in order to minimize

$$L = \sum_{k=1}^K \sum_{j \in S_k} \sum_i (z_j^i - \mu_k^i)^2$$

where z_j^i is the i^{th} coordinate of example z_j , and μ_k is the mean of the examples in subset S_k :

$$\mu_k = \frac{1}{|S_k|} \sum_{j \in S_k} z_j$$

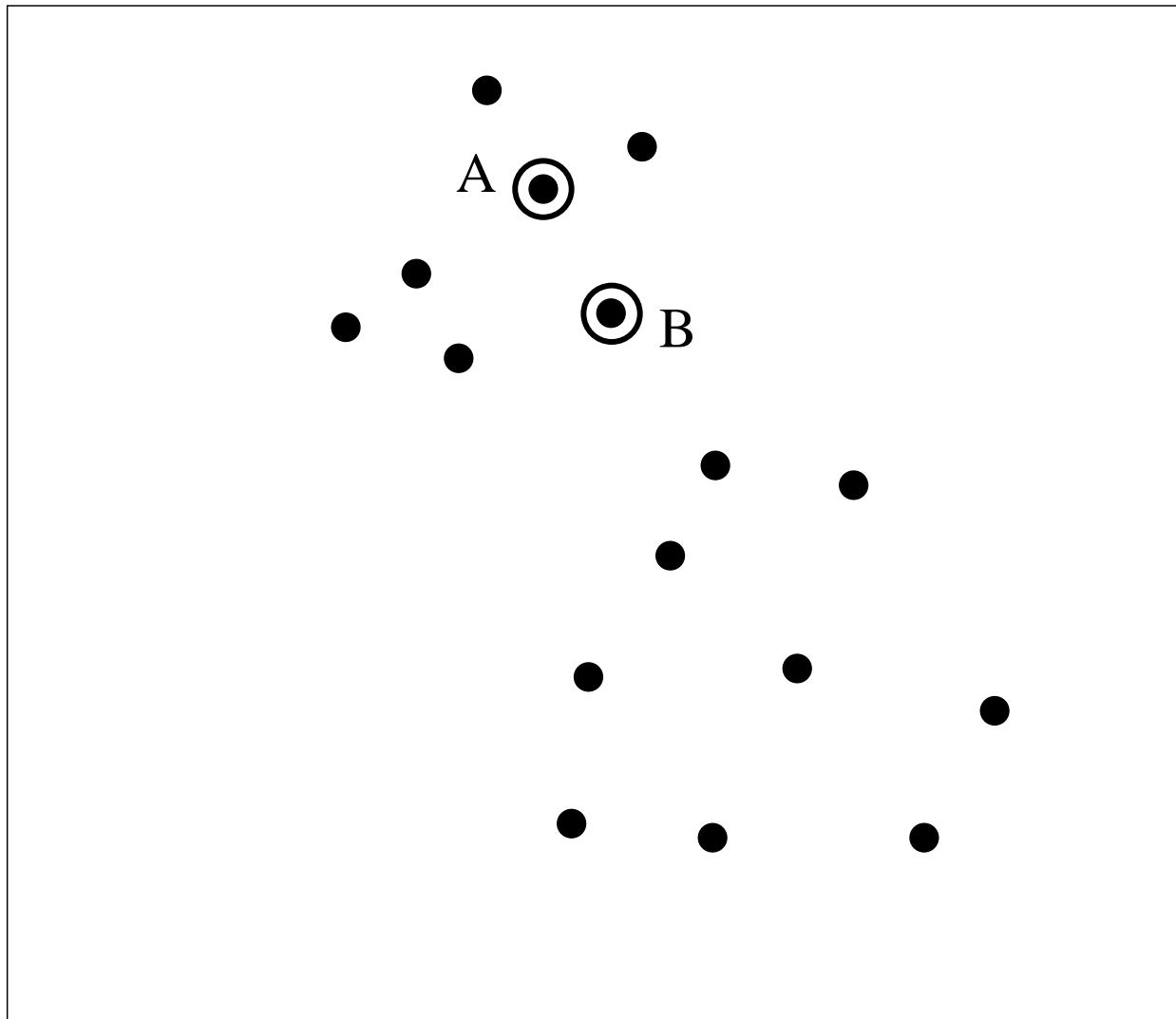
- We could also use another distance metric than Euclidean... (as long as it is a true distance!)

Batch and Stochastic K-Means

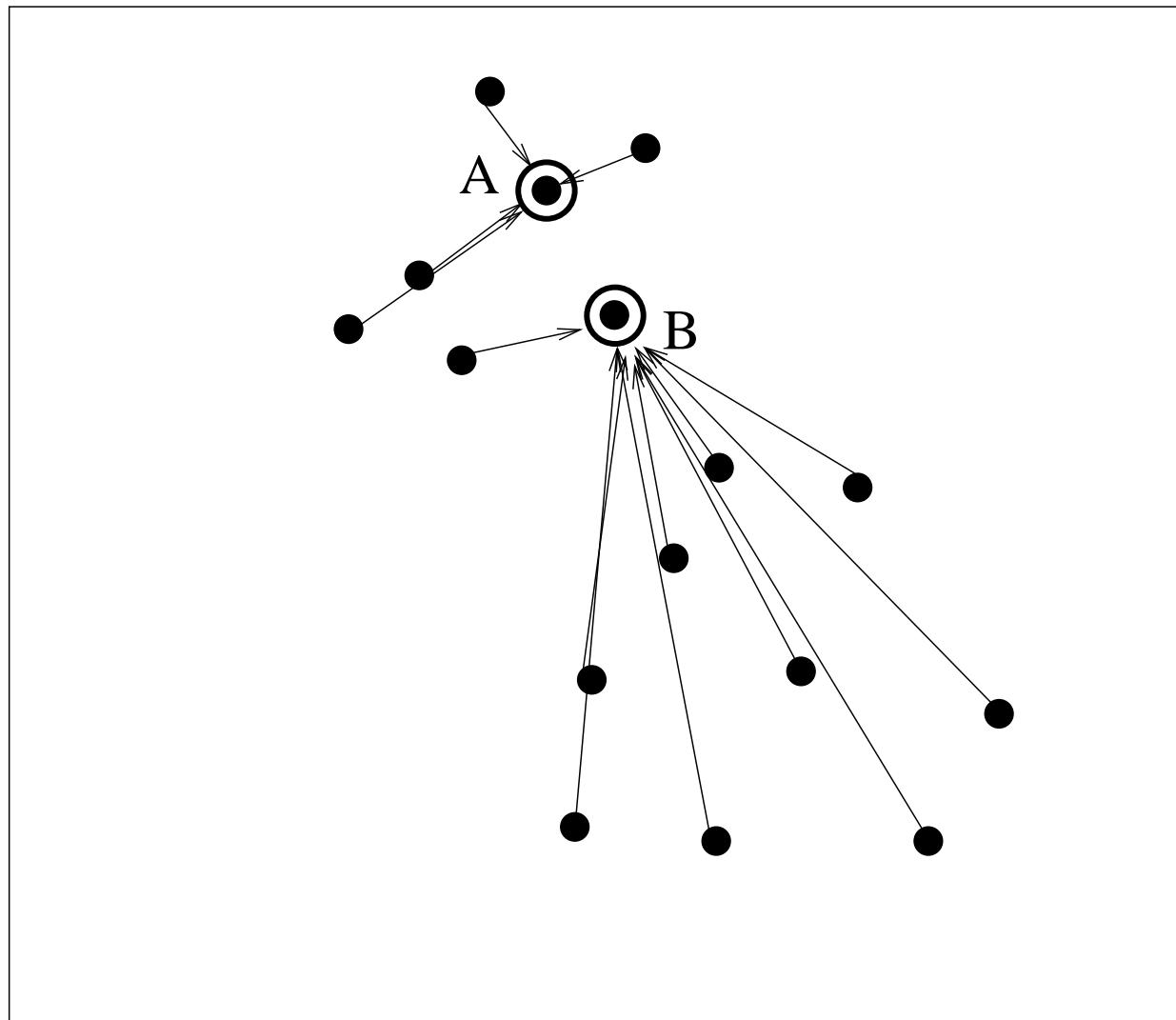
- **Initialization:** select randomly K examples z_j in D_n as initial values of each μ_k
- At each **batch** iteration:
 - For each prototype μ_k , put in the emptied set S_k the examples of D_n that are closer to μ_k than to any other $\mu_{j \neq k}$.
 - Re-compute the value of each μ_k as the average of the examples in S_k .
- The algorithm stops when no prototype moves anymore.
- It can be shown that the K-Means criterion will never increase.
- A **stochastic** version of K-Means can also be derived: given a small η , for each example z_j move the nearest μ_k as follows:

$$\mu_k = \mu_k + \eta(z_j - \mu_k)$$

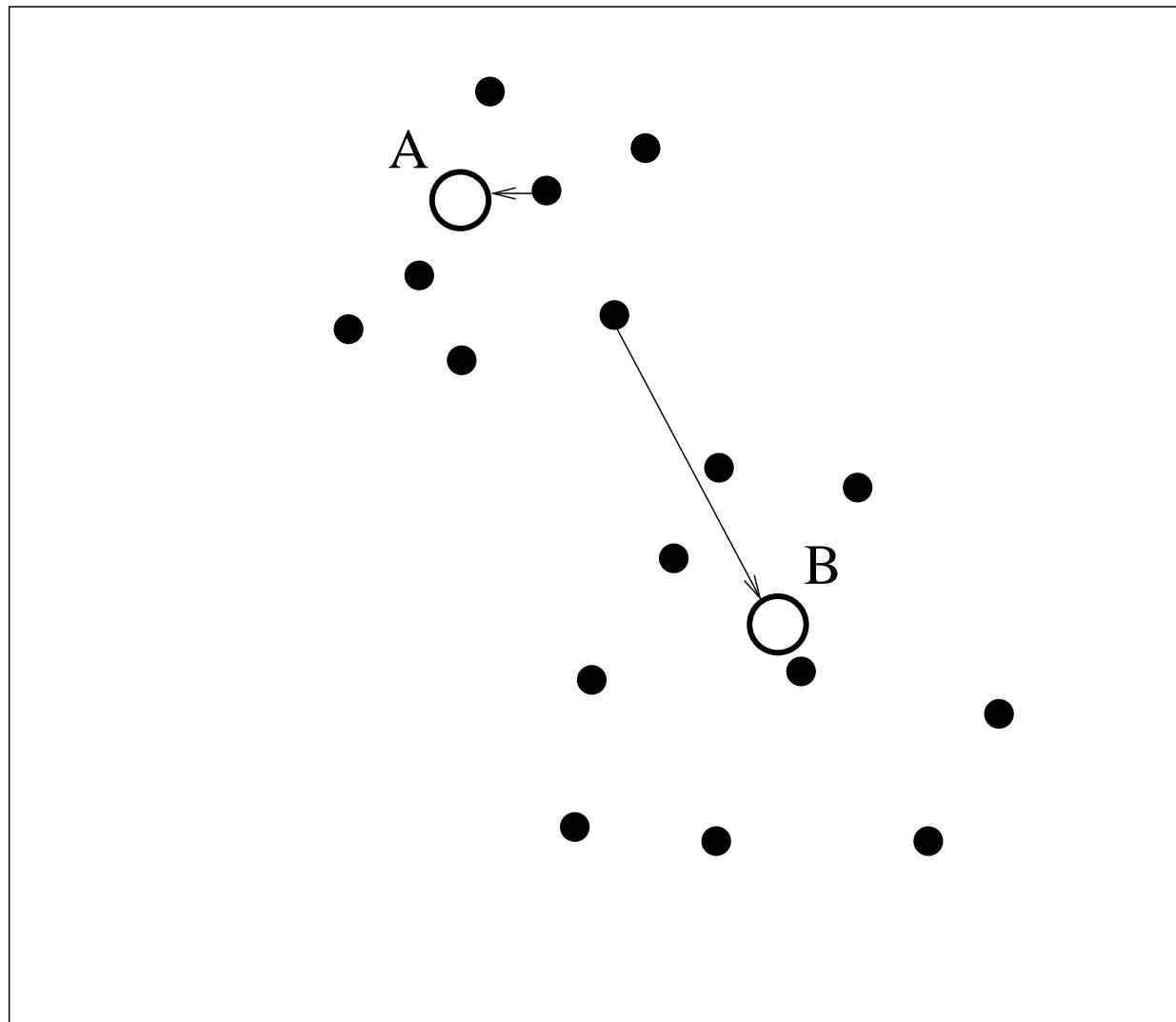
K-Means (Graphical View 1)



K-Means (Graphical View 2)



K-Means (Graphical View 3)



K-Means - Some Remarks

- As for KNN, we can change the metric
- For instance, we can normalize the data
- How to select K ???
- Reminder: as for KNN, K controls the **capacity**...
- Hence, we can use a **model selection** technique
- Note: K-Means is quite **sensitive to initialization**. Other heuristics exist, or you can retrain many times...
- Application: **feature extraction**
represent each example z by the index of the closest prototype