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Parametric or Not?

• The space F is often characterized to be parametric or not.

• Parametric: the space is very small, and characterized by a

small number of parameters.

◦ examples: a Gaussian distribution or a linear function

◦ big prior on the solution

• Non-Parametric: the space is infinite, constrained only by the

training data

◦ examples: K nearest neighbors, Parzen Windows

◦ small prior on the solution

• Semi-Parametric:

◦ examples: most machine learning algorithms!

◦ small prior on the solution, characterized by a large number

of parameters

Classical Models 3



Histograms

• For classification or regression: z = (x, y)

• Let x be a k−dimensional vector

• For each dimension d, divide the possible values xd into md bins

• Total number of bins =
k
∏

d=1

md

• Model: compute average value (on the training set) of ŷ

corresponding to each bin

• Test: given a new example x, select the corresponding bin and

output the associated ŷ

• Can be extended to classification and density estimation.

• Capacity controlled by the total number of bins.
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Histograms (Graphical View)

• x = {x1, x2}

• estimated value of ŷ:

x1 < 5

ŷ = −3.2

ŷ = −3.2 ŷ = 0.1

ŷ = 1.5

5 ≤ x1 < 7 7 ≤ x1

x2 = blue

x2 = red ŷ = 3.2

ŷ = 0.37
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Problem: The Curse of Dimensionality (1)

• First view: combinatorial explosion

◦ What happens when the number of input dimensions grows?

◦ The number of bins grows exponentially faster!

◦ Most bins will get no representative training example

◦ How can we estimate a new example that is in one of those

bins????

◦ In fact, even the bins with some training examples are

probably not correctly estimated...
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K Nearest Neighbors

• Very simple method, no training necessary

• Needed:

◦ a training set Dn = {z1, z2, · · · , zn} with zi = (xi, yi)

◦ a distance function L(x1, x2). For instance, (x1 − x2)
2

◦ a parameter K

• For each test point x

◦ select in Dn the K examples that are nearest to x according

to L(x, xi) and keep their index (from Dn) in {s1, · · · , sK}
◦ decision:

◦ regression: ŷ =
1

K

K
∑

i=1

ysi

◦ classification: ŷ = sign

(

1

K

K
∑

i=1

ysi

)

• Capacity controlled by K.

Classical Models 7



K-NN (Graphical View)

K = 1:
K = 2:
K = 3:
K = 4:

Classical Models 8



KNN - Some Remarks

• What does it mean to be nearest to an example?

• Often used metric: Euclidean distance

d =

√

∑

i

(xi − ti)2

• For KNN,
√· is not necessary

• How to select K ???

• Reminder: K controls the capacity...

• Hence, we can use a model selection technique
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Problem: The Curse of Dimensionality (2)

• Second view: Euclidean distance

◦ In high dimensional spaces, the Euclidean distance between

any two random points converges to the same value!

◦ Moreover, all points are at the boundary of the hypersphere

containing the points.

◦ Hence, all methods based on such distance are bound to

work on small dimensions only.
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KNN versus Parzen Windows

A A A AB B B B

?

KNN solution

Parzen window
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Parzen Windows

• Very simple method, no training necessary

• Needed:

◦ a training set Dn = {z1, z2, · · · , zn} with zi = (xi, yi)

◦ a kernel function K(x1, x2). For instance, exp(− ||x1−x2||
2

2σ2 )

• For each test point x (or z for density estimate)

◦ decision:

◦ regression: ŷ =

n
∑

i=1

yiK(x, xi)

n
∑

i=1

K(x, xi)

◦ classification: ŷ = sign (regression estimate)

◦ density estimate: p̂(z) =
1

n

n
∑

i=1

1√
2πσ

K(x, xi)

• Capacity controlled by σ
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Maximum Likelihood for Density Estimation

• Given a set of examples Dn = {z1, z2, · · · , zn}

• Objective: find a distribution p(Z) that maximizes the

likelihood of future data

• Select a set of distributions p(Z|θ) with parameters θ.

• The likelihood of Dn (all examples are iid):

L(Dn|θ) =
n
∏

i=1

p(zi|θ)

Hence we search for:

θ∗ = arg max
θ

n
∏

i=1

p(zi|θ)

= arg min
θ

−
n
∑

i=1

log p(zi|θ)
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Maximum Likelihood for Gaussians

• Family of one-dimensional Gaussians with θ = {µ, σ}

p̂(z|θ) =
1√
2πσ

exp

(

− (z − µ)2

2σ2

)

• Maximum likelihood solution:

◦ µ̂ =
1

n

n
∑

i=1

zi

◦ σ̂2 =
1

n

n
∑

i=1

(zi − µ̂)2
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Bayes Decision

• Classification: z = (x, y) ∈ R
d × {−1, 1}

• Given: true posterior distribution P (Y |X = x)

• It can be shown that the decision

ŷ = arg max
i∈{1,−1}

P (Y = i|X = x)

is optimal in the sense that it minimizes the number of

classification errors.

• This decision corresponds to the class maximum a posteriori

(MAP) criterion
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Why Class MAP Minimizes Error?

ŷ = arg max
i∈{1,−1}

P (Y = i|X = x)

= arg max
i∈{1,−1}

p(x|Y = i) · P (Y = i)

p(x)

= arg max
i∈{1,−1}

p(x|Y = i) · P (Y = i)

= arg max
i∈{1,−1}

p(x, Y = i)

• Let us select a threshold for all our decisions x = θ.

x

p(x,Y = 1)

θ

p(x,Y = −1)

Classical Models 16



Why Class MAP Minimizes Error?

• The probabilities of error are

p(error|x > θ, Y = −1) = 1 − p(x > θ, Y = −1)

=

∫

x<θ

p(x, Y = −1)

p(error|x < θ, Y = 1) = 1 − p(x < θ, Y = 1)

=

∫

x>θ

p(x, Y = 1)

• Which θ corresponds to the break-even point?

p(x > θ, Y = −1) = p(x < θ, Y = 1) =⇒

p(x, Y = −1) = p(x, Y = 1)
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Bayes Classifiers

• Goal: take the decision based on the MAP criterion:

ŷ = arg max
i∈{1,−1}

p(x|Y = i) · P (Y = i)

• Hence, you need to estimate:

◦ the conditional density p(x|Y = i) for each class i

◦ the class prior P (Y = i) for each class i

• Good: each class is estimated independently

• Bad: you learn unnecessary relations

• This technique is nevertheless often used in speech processing
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Clustering by K-Means

• Given a set of examples Dn = {z1, z2, · · · , zn}

• Search for K prototypes µk of disjoint subsets Sk of Dn in

order to minimize

L =

K
∑

k=1

∑

j∈Sk

∑

i

(zi
j − µi

k)2

where zi
j is the ith coordinate of example zj , and µk is the

mean of the examples in subset Sk:

µk =
1

|Sk|
∑

j∈Sk

zj

• We could also use another distance metric than Euclidean...

(as long as it is a true distance!)
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Batch and Stochastic K-Means

• Initialization: select randomly K examples zj in Dn as initial

values of each µk

• At each batch iteration:

◦ For each prototype µk, put in the emptied set Sk the

examples of Dn that are closer to µk than to any other µj 6=k.

◦ Re-compute the value of each µk as the average of the

examples in Sk.

• The algorithm stops when no prototype moves anymore.

• It can be shown that the K-Means criterion will never increase.

• A stochastic version of K-Means can also be derived: given a

small η, for each example zj move the nearest µk as follows:

µk = µk + η(zj − µk)
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K-Means (Graphical View 1)

A

B
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K-Means (Graphical View 2)

A

B
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K-Means (Graphical View 3)

A

B
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K-Means - Some Remarks

• As for KNN, we can change the metric

• For instance, we can normalize the data

• How to select K ???

• Reminder: as for KNN, K controls the capacity...

• Hence, we can use a model selection technique

• Note: K-Means is quite sensitive to initialization. Other

heuristics exist, or you can retrain many times...

• Application: feature extraction

represent each example z by the index of the closest

prototype
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