An Introduction to
Statistical Machine Learning

- Neural Networks -

Samy Bengio
bengio@idiap.ch

Dalle Molle Institute for Perceptual Artificial Intelligence (IDIAP)
CP 592, rue du Simplon 4
1920 Martigny, Switzerland
http://www.idiap.ch/“bengio

IDIAP - May 12, 2003

Artificial Neural Networks and Gradient Descent

1. Artificial Neural Networks
2. Multi Layer Perceptrons

Gradient Descent

> W

ANN for Classification
Tricks of the Trade

N

6. Other ANN Models

DIA? Artificial Neural Networks 2

Artificial Neural Networks

y

B ?Q %
Q/?}Q/

W w2

x1 X2

An ANN is a set of units (neurons) connected to each other
Each unit may have multiple inputs but have one output

Each unit performs 2 functions:
integration: s = f(x;0)

transfer: y = g(s)

DIA? Artificial Neural Networks

Artificial Neural Networks: Functions

Example of integration function: s = 6y + Z x; - 0;

1

Examples of transfer functions:

tanh: y = tanh(s)
1
1 + exp(—s)

Some units receive inputs from the outside world.

sigmoid: y =

Some units generate outputs to the outside world.
The other units are often named hidden.
Hence, from the outside, an ANN can be viewed as a function.

There are various forms of ANNs. The most popular is the
Multi Layer Perceptron (MLP).

Artificial Neural Networks

Transfer Functions (Graphical View)

y = sigmoid(X)

Artificial Neural Networks

Multi Layer Perceptrons (Graphical View)

outputs

L

Q output layer
"

Q0

parameters

[

inputs

Artificial Neural Networks

Multi Layer Perceptrons

An MLP is a function: § = MLP(z;6)
The parameters 6 = {wﬁ,j, bt Vi, g1}

From now on, let z;(p) be the i1 value in the pth example

represented by vector z(p) (and when possible, let us drop p).

Each layer [(1 <[< M) is fully connected to the previous layer

Integration: st = b + Z 3/;_1 w;
J

Transfer: y! = tanh(s!) or y! = sigmoid(s!) or y! = s
The output of the zeroth layer contains the inputs y? = z;

The output of the last layer M contains the outputs ¢; = y./

Artificial Neural Networks

Multi Layer Perceptrons (Characteristics)

An MLP can approximate any continuous functions

However, it needs to have at least 1 hidden layer (sometimes

easier with 2), and enough units in each layer

Moreover, we have to find the correct value of the parameters 6
How can we find these parameters?

Answer: optimize a given criterion using a gradient method.

Note: capacity controlled by the number of parameters

Artificial Neural Networks

Separability

Linear

Linear+Sigmoid

Linear+Sigmoid+Linear

Linear+Sigmoid+Linear+Sigmoid+Linear

Artificial Neural Networks

Gradient Descent

Objective: minimize a criterion C' over a set of data D,,:

C(D,,,0) = ZL

where

9(p) = MLP (2(p); 0)
We are searching for the best parameters 6:

0" = arg m@in C(Dy,0)

Gradient descent: an iterative procedure where, at each

iteration s we modify the parameters 6:

o0C (D, 0°)
003

98—|—1 _ 98 —n
where 7 is the learning rate.

Artificial Neural Networks 10

Gradient Descent (Graphical View)

gradient (slope)

local minimum

global mini mum/

Artificial Neural Networks

11

Gradient Descent: The Basics

Chain rule:

if a= f(b) and b= g(c)

oa
th —
o oc

6’& (%

~ 3 e = f'(b) - g'(c)

Artificial Neural Networks

=

a=1f(b)

%

b=g(c)

o =

12

Gradient Descent: The Basics

Sum rule:

if a= f(b,c)and b = g(d) and ¢ = h(d)

Oda Oa 0Ob Oa Oc
then — = —

9d _ 9b 2d ' 9c ad

da _ df (b, c) g'(d) + df (b, c)

od ob oc " (d)

Artificial Neural Networks

A

a="f(b,c)

b=g(d)

~ 7

SN

¢ = h(d)

13

Gradient Descent Basics (Graphical View)

l l targets
criterion
' ' outputs

back—propagation

Q of the error

Artificial Neural Networks

14

Gradient Descent: Criterion

First: we need to pass the gradient through the criterion

The global criterion C' is:

n

C(Dy,0) =Y L(y(p),i(p))

p=1
Example: the mean squared error criterion (MSE):
X 1 19
L(y,§) =) 5 (Wi = i)
i=1

And the derivative with respect to the output y;:

OL(y,7)
0Y;

= Ui — Vi

DIA? Artificial Neural Networks

15

Gradient Descent: Last Layer

Second: the derivative with respect to the parameters of the
last layer M

i = " = tanh(s})

M _ M M-1 M
s; =b; + E Y Wy
J

Hence the derivative with respect to ’w% iS:
Jy; B 0Y; 857];\4
owM 9sM owM

= (1—@@)*) -y
And the derivative with respect to b is:

Y dy; 0s}

1

obM T
= (1—-(5))-1

DIA? Artificial Neural Networks

16

Gradient Descent: Other Layers

Third: the derivative with respect to the output of a hidden

layer yé

where

and

6’y§- k &y,ljl 8%’
8y,l€+1 _ 8y,l€+1 | (98;:_1
9y; dsit Oy,
I+1 I+1
= (1—(y,")°) wk—i_]
0Y; 09;
= 1 and =0
8%{\4 8y]]g\§éq;

Artificial Neural Networks

17

Gradient Descent: Other Parameters

Fourth: the derivative with respect to the parameters of a

hidden layer yg

0Y; . Yy . 8%‘
({?w;,k B 8y§~ ({?w;,k
_ g_g?jg !
and
dy; Oy . (9y§-
oot oyl ob
— gz’g .1

Artificial Neural Networks

Gradient Descent: Global Algorithm

1. For each iteration

(a) Initialize gradients ggj = 0 for each 6,

(b) For each example z(p) = (x(p), y(p))

i. Forward phase: compute y(p) = MLP(x(p), 9)

ii. Compute 8L<%<5(>£<p>>

iii. For each layer [from M to 1:

9y(p)
8 l
Oy l. O’
B. Compute =2 and —2

bl 8w3 %

C. Accumulate gradlentsz

oc _0C |, 0C 0L 9j(p) Oy,
obl. — obl OL dg(p) oyl oOb!

A. Compute

0c _ 9C 0C OL 9y(p) 0y
810;-7,{ Gwﬁ,k oL 0y(p) &y; Gwﬁ,k

9§+1 03 oC
7

(c) Update the parameters: — " 36¢

DIA? Artificial Neural Networks 19

Gradient Descent: An Example (1)

Let us start with a simple MLP:

2.3

Artificial Neural Networks

20

Gradient Descent: An Example (2)

We forward one example and compute its MSE:

MSE =1.23 | t
target .

2.3

DIA? Artificial Neural Networks

21

Gradient Descent: An Example (3)

We backpropagate the gradient everywhere:

MSE =1.23 | target 05
dy = 1.57 (AMSE =157 |
0.3
db=1.57 ds =1.57
- 1.2
06 dw=1.44
0.92 \dy=1.89
11 tanh 23
db 1.58 Jds=0.29 db=0.29
=0.24 0.6

DIA? Artificial Neural Networks 22

Gradient Descent: An Example (4)

We modity each parameter with learning rate 0.1:

2.24

Artificial Neural Networks

23

Gradient Descent: An Example (5)

We forward again the same example and compute its (smaller)
MGSE:

MSE =0.27 | target 05

0.24
linear

1.23 2.24

DIA? Artificial Neural Networks

24

ANN for Binary Classification

One output with target coded as {—1,1} or {0,1} depending
on the last layer output function (linear, sigmoid, tanh, ...)

For a given output, the associated class corresponds to the

nearest target.

How to obtain class posterior probabilities:
use a sigmoid with targets {0, 1}
the output will encode P(Y = 1|X = z)

Note: we do not optimize directly the classification error...

Artificial Neural Networks 25

ANN for Multiclass Classification

Simplest solution: one-hot encoding
One output per class, coded for instance as (0,---,1,---,0)

For a given output, the associated class corresponds to the

index of the maximum value in the output vector

How to obtain class posterior probabilities:
exp(s;)

> exp(s))
J

each output ¢ will encode P(Y =i|X = x)

use a softmax: g; =

Otherwise: each class corresponds to a different binary code

For example for a 4-class problem, we could have an 8-dim

code for each class

For a given output, the associated class corresponds to the

nearest code (according to a given distance)

Example: Error Correcting Output Codes (ECOC)

Artificial Neural Networks 26

Error Correcting Output Codes

Let us represent a 4-class problem with 6 bits:
class 1: 110001
class 2: 100010
class 3: 010100
class 4: 001000

We then create 6 classifiers (or 1 classifier with 6 outputs)

For example: the first classifier will try to separate classes 1
and 2 from classes 3 and 4

When a new example comes, we compute the distance between
the code obtained by the 6 classifiers and the 4 classes:

obtained: 011110

distances: (let us use Manhatan distance)
to class 1: 5 to class 3: 2

to class 2: 4 to class 4: 3

Artificial Neural Networks 27

Tricks of the Trade

A good book to make ANNs working:

G. B. Orr and K. Miiller. Neural Networks: Tricks of the
Trade. 1998. Springer.

Stochastic Gradient
Initialization

Learning Rate and Learning Rate Decay

Weight Decay

Artificial Neural Networks

28

Stochastic Gradient Descent

The gradient descent technique is batch:

First accumulate the gradient from all examples, then

adjust the parameters

What if the data set is very big, and contains redundencies?

Other solution: stochastic gradient descent
Adjust the parameters after each example instead

Stochastic: we approximate the full gradient with its

estimate at each example
Nevertheless, convergence proofs exist for such method.

Moreover: much faster for large data sets!!!

Other gradient techniques: second order methods such as
conjugate gradient: good for small data sets

DIA? Artificial Neural Networks

29

Initialization

How should we initialize the parameters of an ANN?

One common problem: saturation

When the weighted sum is big, the output of the tanh

(or sigmoid) saturates, and the gradient tends towards 0

derivative is amost zero

derivativeis good

weighted sum

DIA? Artificial Neural Networks 30

Initialization

Hence, we should initialize the parameters such that the

average weighted sum is in the linear part of the transfer

function:
See Leon Bottou’s thesis for details

input data: normalized with zero mean and unit variance,

targets:
regression: normalized with zero mean and unit variance,
classification:
output transfer function is tanh: 0.6 and -0.6
output transfer function is sigmoid: 0.8 and 0.2
output transfer function is linear: 0.6 and -0.6

arameters: uniformly distributed in —1 : 1
b Y vfan in Vfan in

~ Artificial Neural Networks 31

Learning Rate and Learning Rate Decay

How to select the learning rate n 7
If n is too big: the optimization diverges

If n is too small: the optimization is very slow and may be
stuck into local minima
One solution: progressive decay

initial learning rate n = ng

learning rate decay 74

At each iteration s:

. 1o

DIA? Artificial Neural Networks

32

Learning Rate Decay (Graphical View)

1 [[[[[[[[
1/(1+0.1*x)
0.9 |

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

O I I I I I I I I I
O 10 20 30 40 50 60 /0 80 90 100

Artificial Neural Networks

Weight Decay

One way to control the capacity: regularization

For MLPs, when the weights tend to 0, sigmoid or tanh

functions are almost linear, hence with low capacity

Weight decay: penalize solutions with high weights and bias
(in amplitude)

C(Dy,0) = ZL i)+ 5 >0

where (3 controls the weight decay.

Easy to implement:

g — E”:) R

893

Artificial Neural Networks

34

Radial Basis Function (RBF) Models

Normal MLP but the hidden layer [is encoded as follows:

1 _
si=—5 D (0 (W —miy)?

j
y; = exp(s})
The parameters of such layer [are 6; = {'yg,j, ,Ué,j . Vi, g}

These layers are useful to extract local features (whereas tanh
layers extract global features)

Initialization: use K-Means for instance

Artificial Neural Networks 35

Difference Between RBFs and MLPs

RBFs MLPs

Artificial Neural Networks

36

Recurrent Neural Networks

Such models admit layers [with integration functions

st=f (yé““) where k > 0, hence loops, or recurrences
Such layers [encode the notion of a temporal state
Useful to search for relations in temporal data

Do not need to specify the exact delay in the relation

In order to compute the gradient, one must enfold in time all

the relations between the data:

si(t) = f(y.""(t — 1)) where k >0

Hence, need to exhibit the whole time-dependent graph

between input sequence and output sequence

Caveat: it can be shown that the gradient vanishes

exponentially fast through time

Artificial Neural Networks

37

Recurrent NNs (Graphical View)

y(t-2) y(t-1) y(®) y(t+1)

y(t)

X(t-2) X(t=1) X(t) X(t+1)

DIA? Artificial Neural Networks 38

Auto Associative Networks

Apparent objective: learn to reconstruct the input

In such models, the target vector is the same as the input

vector!
Real objective: learn an internal representation of the data

If there is one hidden layer of linear units, then after learning,
the model implements a principal component analysis with the
first IV principal components (N is the number of hidden

units).

If there are non-linearities and more hidden layers, then the
system implements a kind of non-linear principal component

analysis.

Artificial Neural Networks

39

Auto Associative Nets (Graphical View)

targets = inputs

L
QOO0 O

V=l
Y.

A =S

PP

Inputs

Artificial Neural Networks

40

Mixture of Experts

Let fi(x;0¢,) be a differentiable parametric function
Let there be N such functions f;.

Let g(x;60,) be a gater: a differentiable function with N

positive outputs such that
N
> glxi)i =1
i=1
Then a mixture of experts is a function h(x;0):

h(z;0) = Zg(x; 0g)[i] - fi(x;0y,)

Artificial Neural Networks

41

Mixture of Experts - (Graphical View)

Expert 1

Expert 2

Expert N

I3

Gater

Artificial Neural Networks

42

Mixture of Experts - Training

We can compute the gradient with respect to every parameters:

parameters in the expert f;:

Oh(x;0) Oh(x;0) Ofi(w;0y)
295, Ofi(x;05,) 99y,
— g(ZB, 99) [7’] (9(9f2

parameters in the gater g:

Oh(z;0) o~ Oh(z;0) Og(z;0,)]i
90, ;ag(x;eg)[i]’ a0,

DIA? Artificial Neural Networks

43

Mixture of Experts - Discussion

The gater implements a soft partition of the input space

(to be compared with, say, K-Means — hard partition)
Useful when there might be regimes in the data

Extension: hierarchical mixture of experts, when the experts

are themselves represented as mixtures of experts!

Special case: when the experts can be trained by EM, the
mixture and the hierachical mixture can also be trained by EM.

Artificial Neural Networks 44

