

*An Introduction to
Statistical Machine Learning
- Neural Networks -*

Samy Bengio

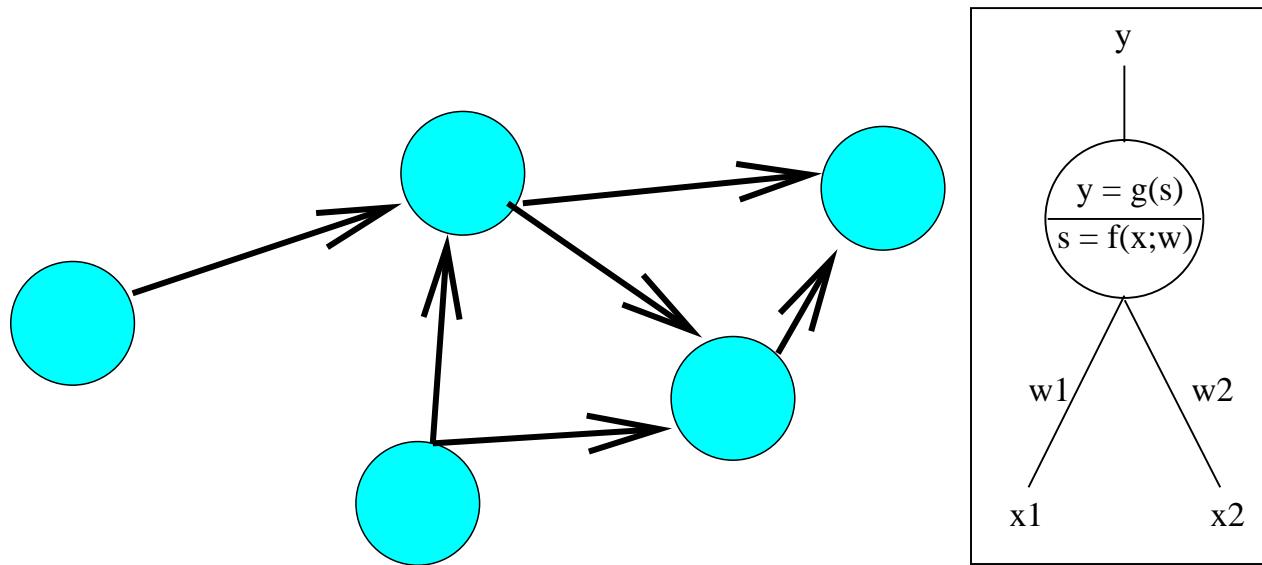
bengio@idiap.ch

Dalle Molle Institute for Perceptual Artificial Intelligence (IDIAP)
CP 592, rue du Simplon 4
1920 Martigny, Switzerland
<http://www.idiap.ch/~bengio>

Artificial Neural Networks and Gradient Descent

1. Artificial Neural Networks
2. Multi Layer Perceptrons
3. Gradient Descent
4. ANN for Classification
5. Tricks of the Trade
6. Other ANN Models

Artificial Neural Networks

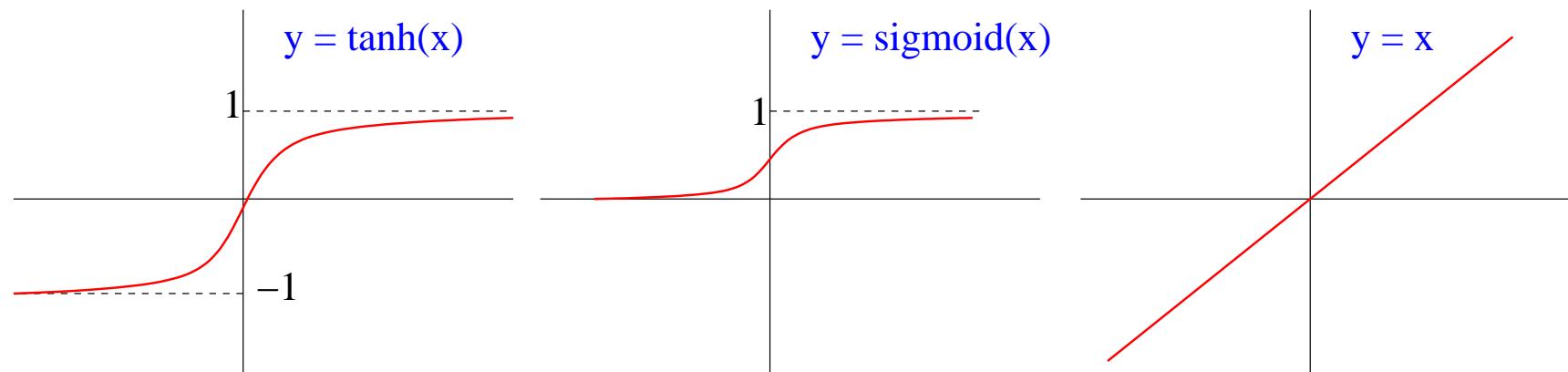


- An ANN is a set of units (neurons) connected to each other
- Each unit may have **multiple inputs** but have **one output**
- Each unit performs 2 functions:
 - integration: $s = f(x; \theta)$
 - transfer: $y = g(s)$

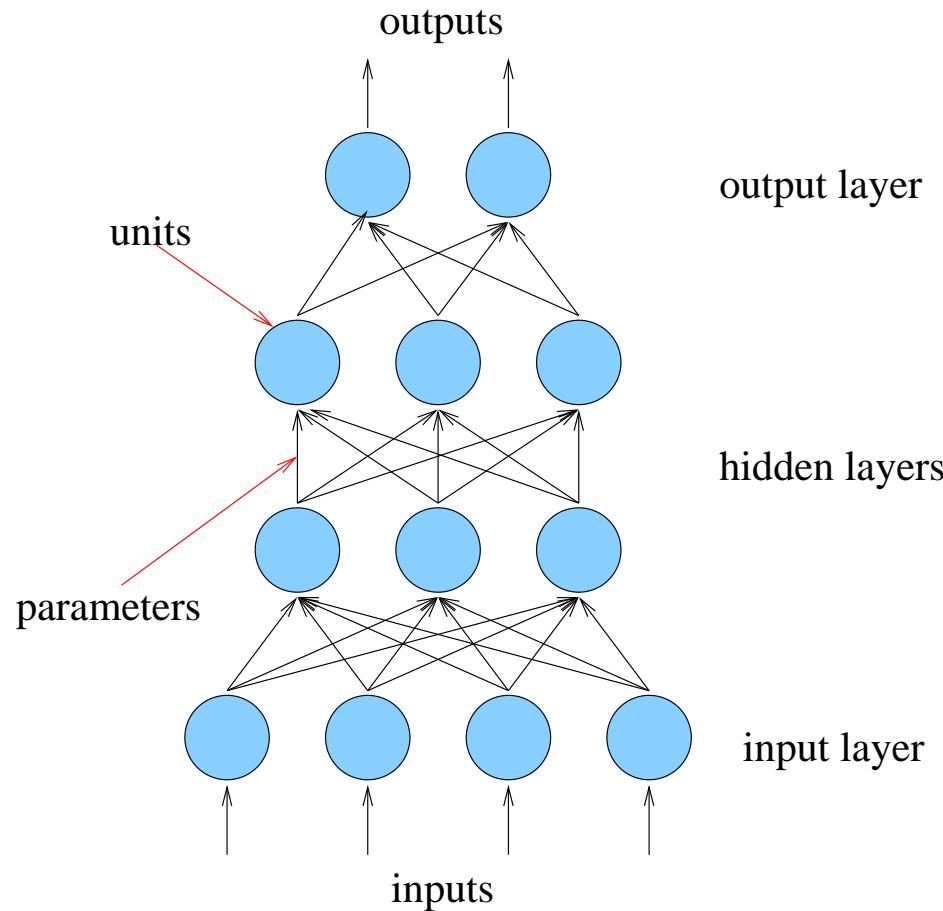
Artificial Neural Networks: Functions

- Example of integration function: $s = \theta_0 + \sum_i x_i \cdot \theta_i$
- Examples of transfer functions:
 - tanh: $y = \tanh(s)$
 - sigmoid: $y = \frac{1}{1 + \exp(-s)}$
- Some units receive **inputs** from the outside world.
- Some units generate **outputs** to the outside world.
- The other units are often named **hidden**.
- Hence, from the outside, an ANN can be viewed as a **function**.
- There are various forms of ANNs. The most popular is the Multi Layer Perceptron (MLP).

Transfer Functions (Graphical View)



Multi Layer Perceptrons (Graphical View)



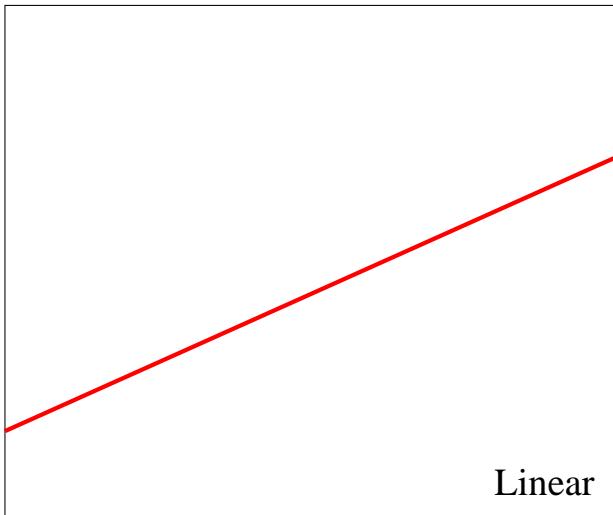
Multi Layer Perceptrons

- An MLP is a function: $\hat{y} = \text{MLP}(x; \theta)$
- The parameters $\theta = \{w_{i,j}^l, b_i^l : \forall i, j, l\}$
- From now on, let $x_i(p)$ be the i^{th} value in the p^{th} example represented by vector $x(p)$ (and when possible, let us drop p).
- Each layer l ($1 \leq l \leq M$) is fully connected to the previous layer
- **Integration:** $s_i^l = b_i^l + \sum_j y_j^{l-1} \cdot w_{i,j}^l$
- **Transfer:** $y_i^l = \tanh(s_i^l)$ or $y_i^l = \text{sigmoid}(s_i^l)$ or $y_i^l = s_i^l$
- The output of the zeroth layer contains the inputs $y_i^0 = x_i$
- The output of the last layer M contains the outputs $\hat{y}_i = y_i^M$

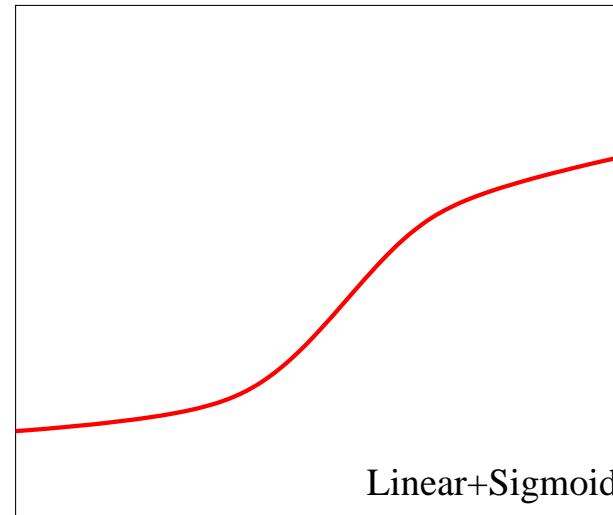
Multi Layer Perceptrons (Characteristics)

- An MLP can **approximate any continuous functions**
- However, it needs to have at least 1 hidden layer (sometimes easier with 2), and enough units in each layer
- Moreover, we have to find the correct value of the parameters θ
- How can we find these parameters?
- Answer: **optimize** a given **criterion** using a **gradient** method.
- Note: capacity controlled by the number of parameters

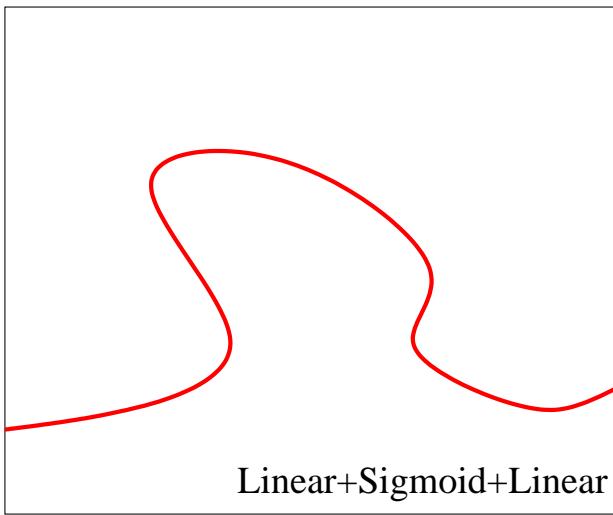
Separability



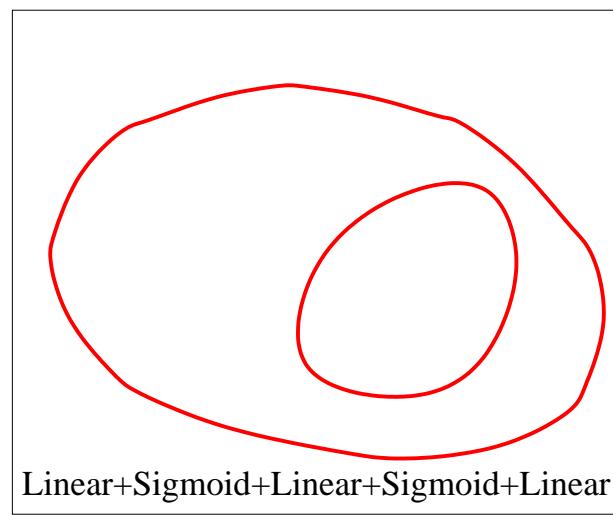
Linear



Linear+Sigmoid



Linear+Sigmoid+Linear



Linear+Sigmoid+Linear+Sigmoid+Linear

Gradient Descent

- **Objective:** minimize a criterion C over a set of data D_n :

$$C(D_n, \theta) = \sum_{p=1}^n L(y(p), \hat{y}(p))$$

where

$$\hat{y}(p) = \text{MLP}(x(p); \theta)$$

- We are searching for the best parameters θ :

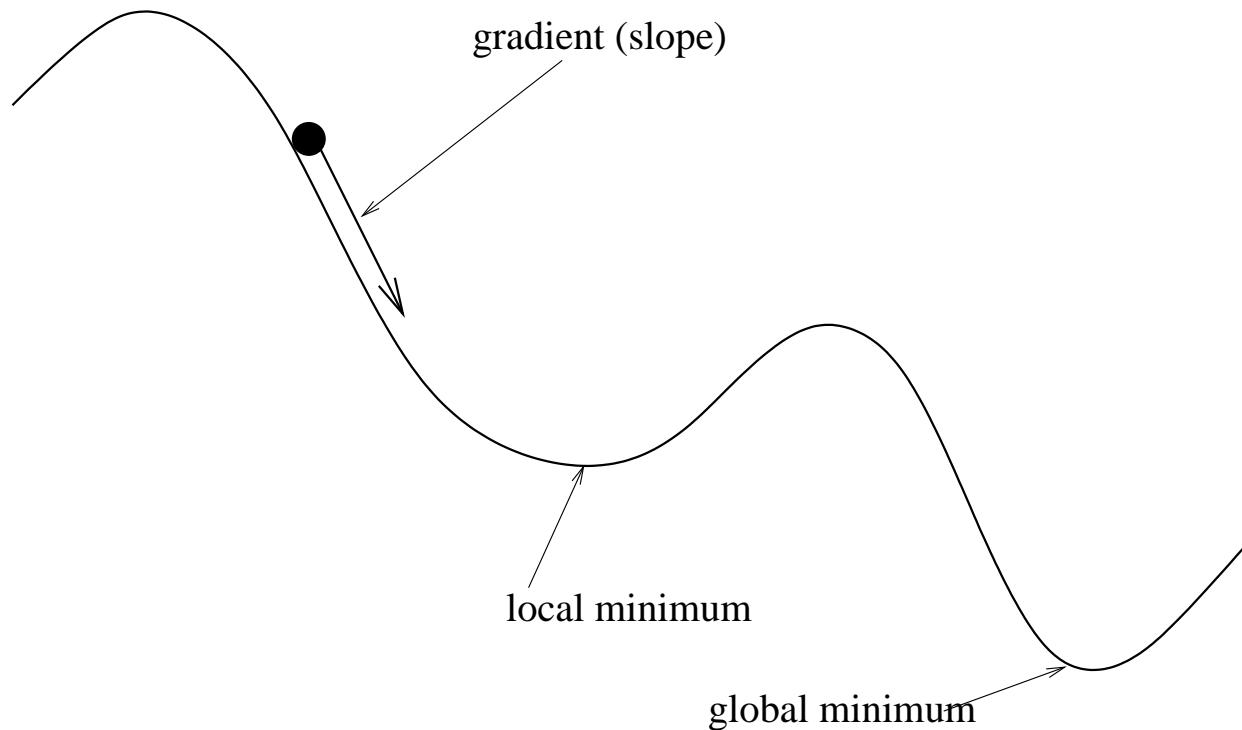
$$\theta^* = \arg \min_{\theta} C(D_n, \theta)$$

- **Gradient descent:** an iterative procedure where, at each iteration s we modify the parameters θ :

$$\theta^{s+1} = \theta^s - \eta \frac{\partial C(D_n, \theta^s)}{\partial \theta^s}$$

where η is the **learning rate**.

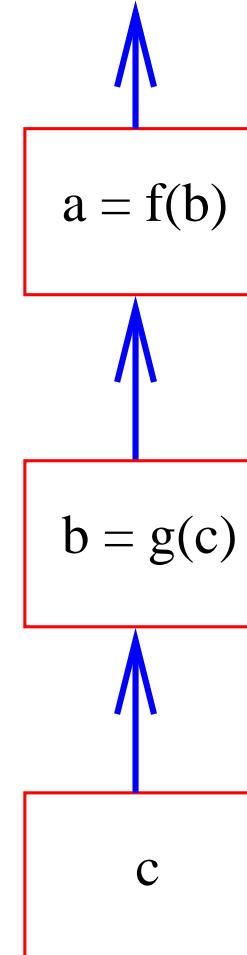
Gradient Descent (Graphical View)



Gradient Descent: The Basics

Chain rule:

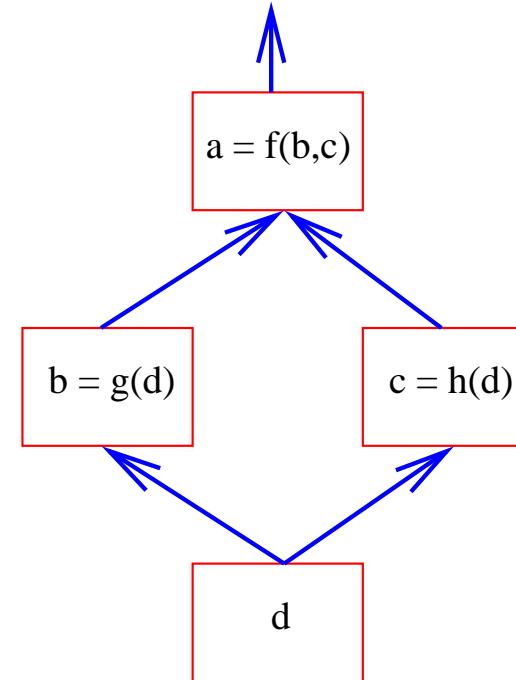
- if $a = f(b)$ and $b = g(c)$
- then $\frac{\partial a}{\partial c} = \frac{\partial a}{\partial b} \cdot \frac{\partial b}{\partial c} = f'(b) \cdot g'(c)$



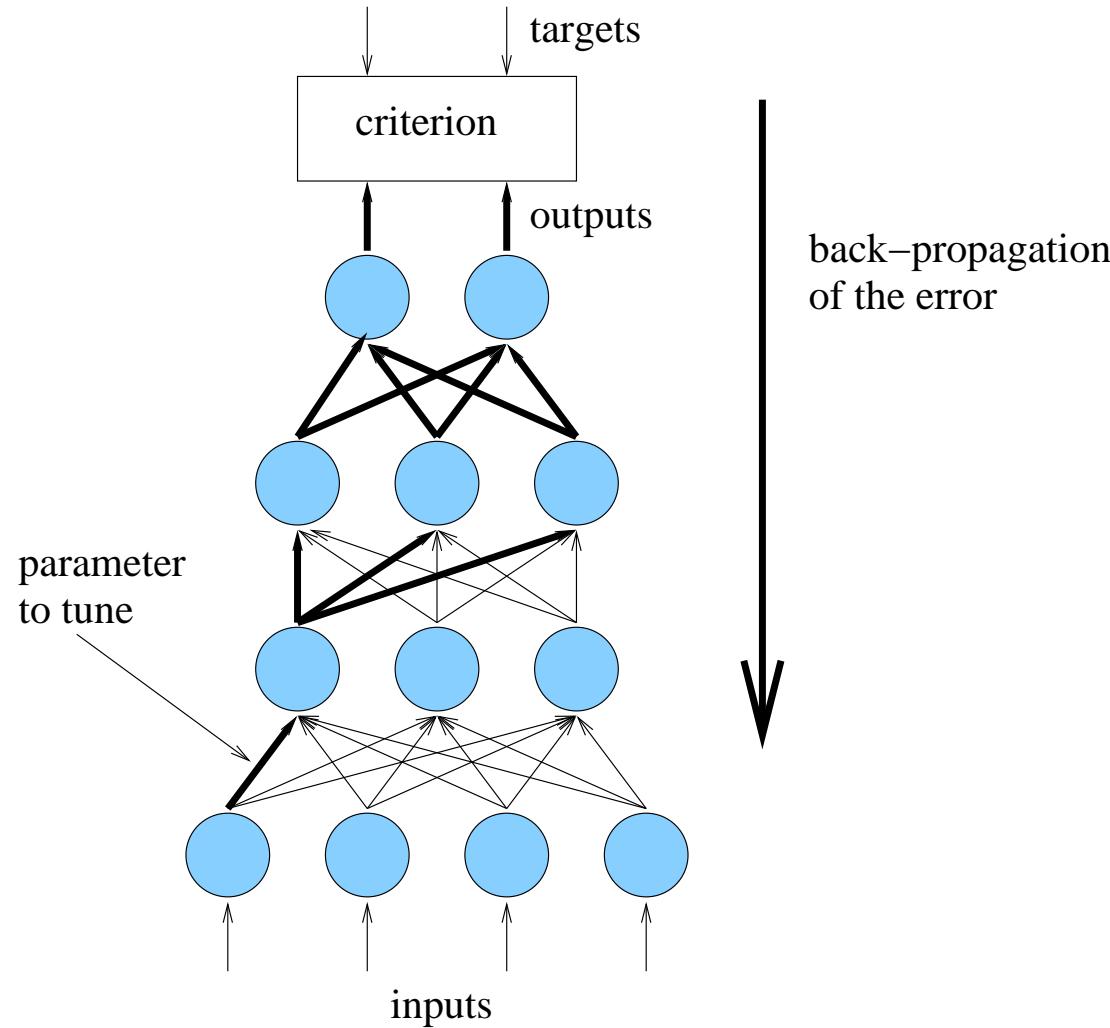
Gradient Descent: The Basics

Sum rule:

- **if** $a = f(b, c)$ and $b = g(d)$ and $c = h(d)$
- **then** $\frac{\partial a}{\partial d} = \frac{\partial a}{\partial b} \cdot \frac{\partial b}{\partial d} + \frac{\partial a}{\partial c} \cdot \frac{\partial c}{\partial d}$
- $\frac{\partial a}{\partial d} = \frac{\partial f(b, c)}{\partial b} \cdot g'(d) + \frac{\partial f(b, c)}{\partial c} \cdot h'(d)$



Gradient Descent Basics (Graphical View)



Gradient Descent: Criterion

- **First**: we need to pass the gradient through the **criterion**
- The global criterion C is:

$$C(D_n, \theta) = \sum_{p=1}^n L(y(p), \hat{y}(p))$$

- Example: the **mean squared error** criterion (MSE):

$$L(y, \hat{y}) = \sum_{i=1}^d \frac{1}{2} (y_i - \hat{y}_i)^2$$

- And the derivative with respect to the output \hat{y}_i :

$$\frac{\partial L(y, \hat{y})}{\partial \hat{y}_i} = \hat{y}_i - y_i$$

Gradient Descent: Last Layer

- **Second:** the derivative with respect to the parameters of the last layer M

$$\hat{y}_i = y_i^M = \tanh(s_i^M)$$

$$s_i^M = b_i^M + \sum_j y_j^{M-1} \cdot w_{i,j}^M$$

- Hence the derivative with respect to $w_{i,j}^M$ is:

$$\begin{aligned} \frac{\partial \hat{y}_i}{\partial w_{i,j}^M} &= \frac{\partial \hat{y}_i}{\partial s_i^M} \cdot \frac{\partial s_i^M}{\partial w_{i,j}^M} \\ &= (1 - (\hat{y}_i)^2) \cdot y_j^{M-1} \end{aligned}$$

- And the derivative with respect to b_i^M is:

$$\begin{aligned} \frac{\partial \hat{y}_i}{\partial b_i^M} &= \frac{\partial \hat{y}_i}{\partial s_i^M} \cdot \frac{\partial s_i^M}{\partial b_i^M} \\ &= (1 - (\hat{y}_i)^2) \cdot 1 \end{aligned}$$

Gradient Descent: Other Layers

- **Third:** the derivative with respect to the output of a hidden layer y_j^l

$$\frac{\partial \hat{y}_i}{\partial y_j^l} = \sum_k \frac{\partial \hat{y}_i}{\partial y_k^{l+1}} \cdot \frac{\partial y_k^{l+1}}{\partial y_j^l}$$

where

$$\begin{aligned} \frac{\partial y_k^{l+1}}{\partial y_j^l} &= \frac{\partial y_k^{l+1}}{\partial s_k^{l+1}} \cdot \frac{\partial s_k^{l+1}}{\partial y_j^l} \\ &= (1 - (y_k^{l+1})^2) \cdot w_{k,j}^{l+1} \end{aligned}$$

and

$$\frac{\partial \hat{y}_i}{\partial y_i^M} = 1 \text{ and } \frac{\partial \hat{y}_i}{\partial y_{k \neq i}^M} = 0$$

Gradient Descent: Other Parameters

- **Fourth:** the derivative with respect to the parameters of a hidden layer y_j^l

$$\begin{aligned}\frac{\partial \hat{y}_i}{\partial w_{j,k}^l} &= \frac{\partial \hat{y}_i}{\partial y_j^l} \cdot \frac{\partial y_j^l}{\partial w_{j,k}^l} \\ &= \frac{\partial \hat{y}_i}{\partial y_j^l} \cdot y_k^{l-1}\end{aligned}$$

and

$$\begin{aligned}\frac{\partial \hat{y}_i}{\partial b_j^l} &= \frac{\partial \hat{y}_i}{\partial y_j^l} \cdot \frac{\partial y_j^l}{\partial b_j^l} \\ &= \frac{\partial \hat{y}_i}{\partial y_j^l} \cdot 1\end{aligned}$$

Gradient Descent: Global Algorithm

1. For each iteration

- (a) Initialize gradients $\frac{\partial C}{\partial \theta_i} = 0$ for each θ_i
- (b) For each example $z(p) = (x(p), y(p))$
 - i. Forward phase: compute $\hat{y}(p) = \text{MLP}(x(p), \theta)$
 - ii. Compute $\frac{\partial L(y(p), \hat{y}(p))}{\partial \hat{y}(p)}$
 - iii. For each layer l from M to 1:
 - A. Compute $\frac{\partial \hat{y}(p)}{\partial y_j^l}$
 - B. Compute $\frac{\partial y_j^l}{\partial b_j^l}$ and $\frac{\partial y_j^l}{\partial w_{j,k}^l}$
 - C. Accumulate gradients:

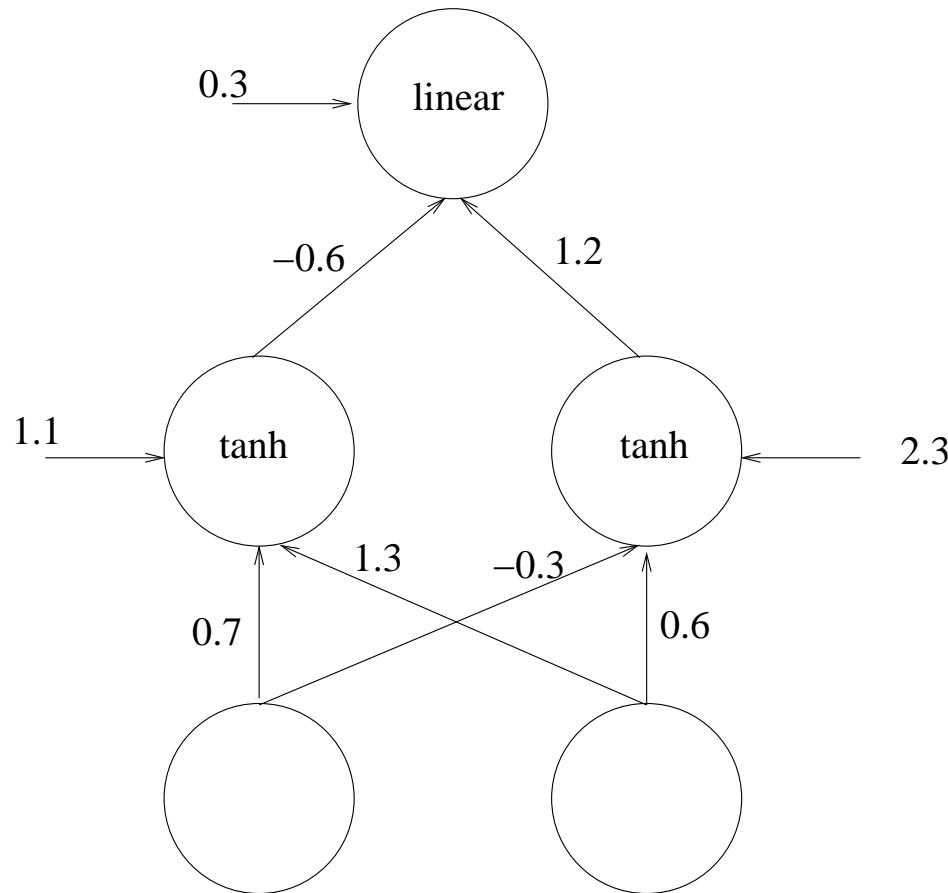
$$\frac{\partial C}{\partial b_j^l} = \frac{\partial C}{\partial b_j^l} + \frac{\partial C}{\partial L} \cdot \frac{\partial L}{\partial \hat{y}(p)} \cdot \frac{\partial \hat{y}(p)}{\partial y_j^l} \cdot \frac{\partial y_j^l}{\partial b_j^l}$$

$$\frac{\partial C}{\partial w_{j,k}^l} = \frac{\partial C}{\partial w_{j,k}^l} + \frac{\partial C}{\partial L} \cdot \frac{\partial L}{\partial \hat{y}(p)} \cdot \frac{\partial \hat{y}(p)}{\partial y_j^l} \cdot \frac{\partial y_j^l}{\partial w_{j,k}^l}$$

- (c) Update the parameters: $\theta_i^{s+1} = \theta_i^s - \eta \cdot \frac{\partial C}{\partial \theta_i^s}$

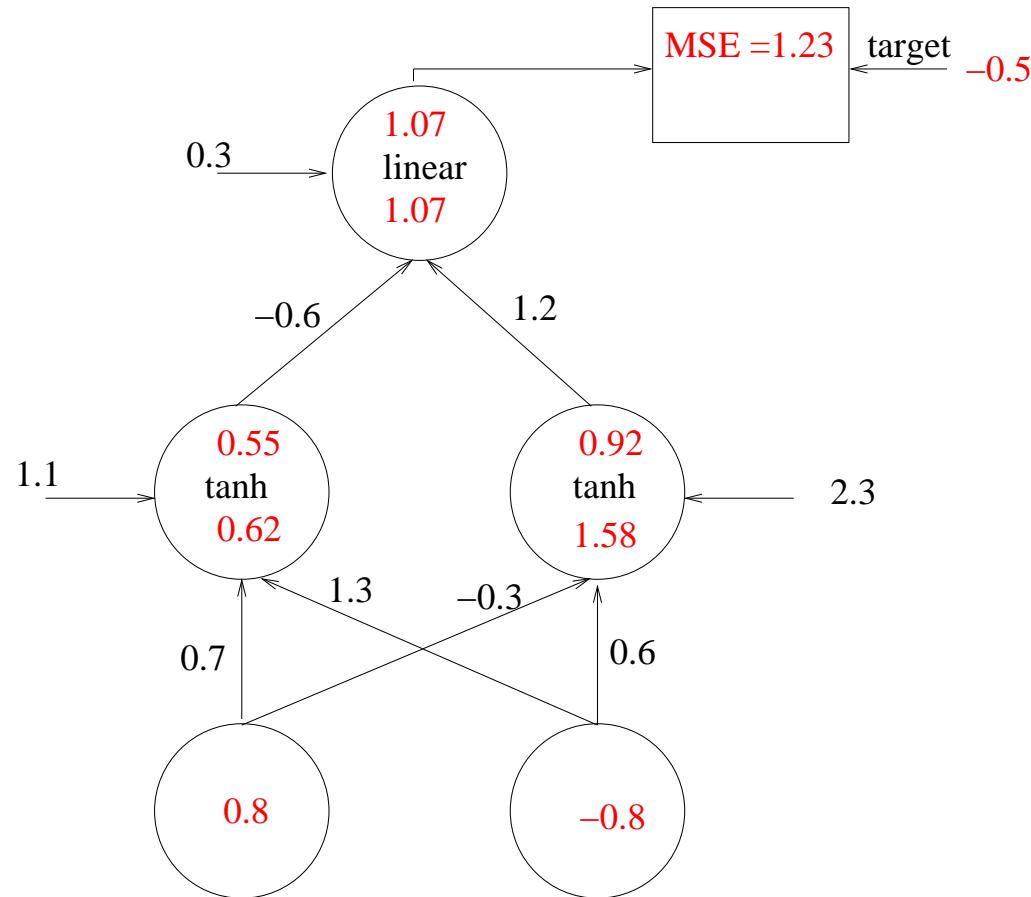
Gradient Descent: An Example (1)

Let us start with a simple MLP:



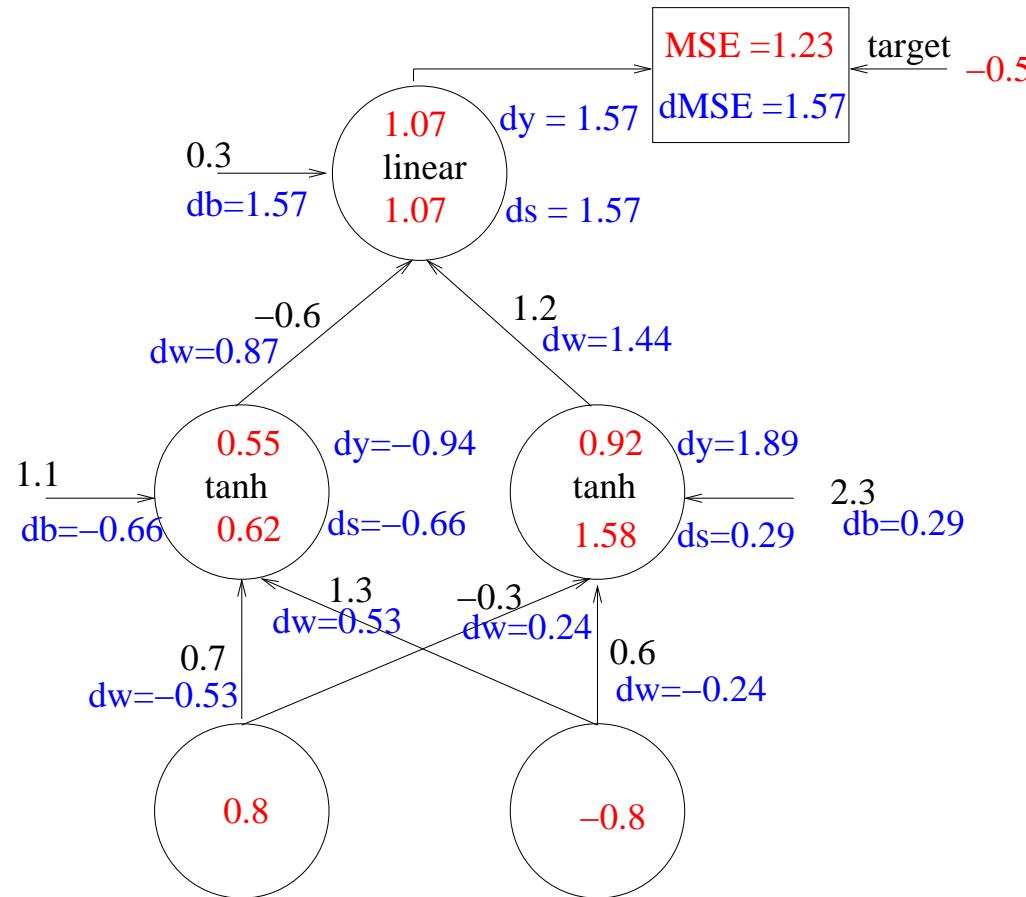
Gradient Descent: An Example (2)

We forward one example and compute its MSE:



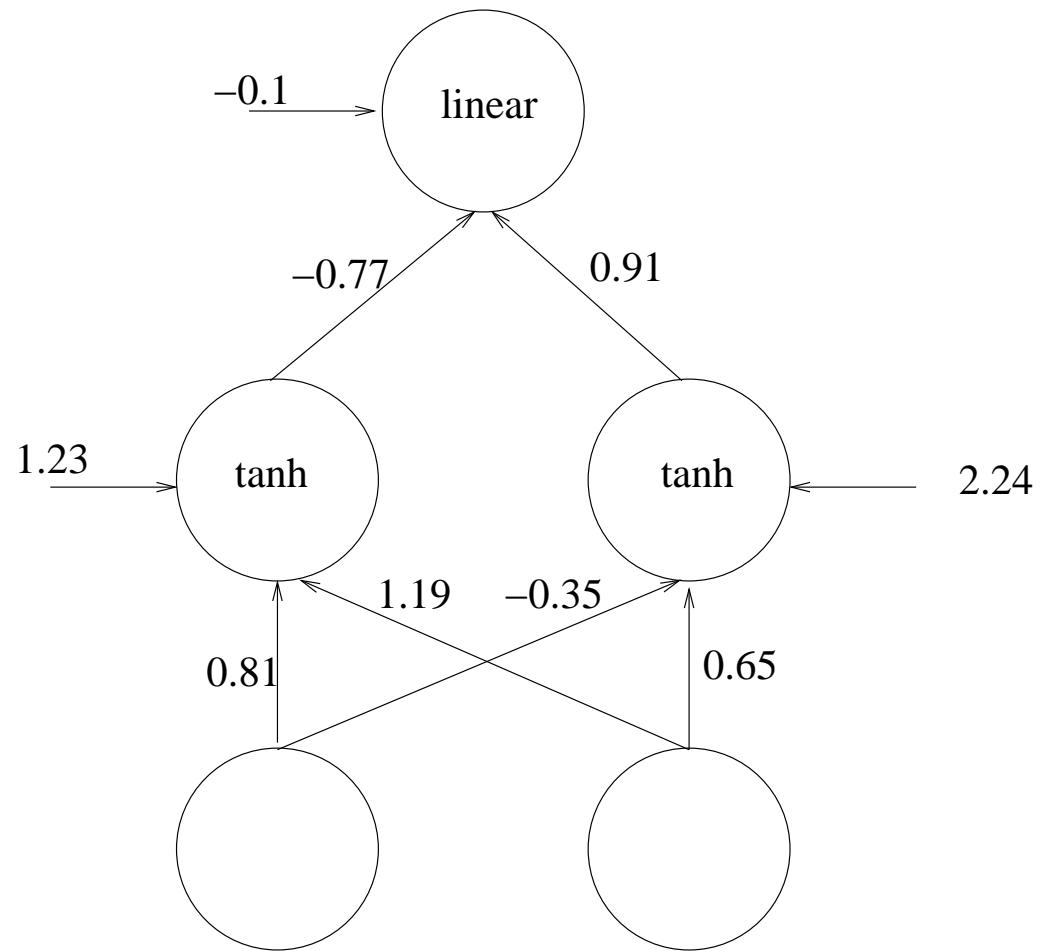
Gradient Descent: An Example (3)

We backpropagate the gradient everywhere:



Gradient Descent: An Example (4)

We modify each parameter with learning rate 0.1:



Gradient Descent: An Example (5)

We forward again the same example and compute its (smaller) MSE:



ANN for Binary Classification

- One output with target coded as $\{-1, 1\}$ or $\{0, 1\}$ depending on the last layer output function (linear, sigmoid, tanh, ...)
- For a given output, the associated class corresponds to the nearest target.
- How to obtain class posterior **probabilities**:
 - use a **sigmoid** with targets $\{0, 1\}$
 - the output will encode $P(Y = 1|X = x)$
- Note: we do not optimize directly the classification error...

ANN for Multiclass Classification

- Simplest solution: **one-hot** encoding
 - One output per class, coded for instance as $(0, \dots, 1, \dots, 0)$
 - For a given output, the associated class corresponds to the index of the maximum value in the output vector
 - How to obtain class posterior **probabilities**:
 - use a **softmax**: $\hat{y}_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)}$
 - each output i will encode $P(Y = i | X = x)$
- Otherwise: each class corresponds to a different **binary code**
 - For example for a 4-class problem, we could have an 8-dim code for each class
 - For a given output, the associated class corresponds to the nearest code (according to a given distance)
 - Example: Error Correcting Output Codes (ECOC)

Error Correcting Output Codes

- Let us represent a 4-class problem with 6 bits:

class 1: 1 1 0 0 0 1

class 2: 1 0 0 0 1 0

class 3: 0 1 0 1 0 0

class 4: 0 0 1 0 0 0

- We then create 6 classifiers (or 1 classifier with 6 outputs)
- For example: the first classifier will try to separate classes 1 and 2 from classes 3 and 4
- When a new example comes, we compute the distance between the code obtained by the 6 classifiers and the 4 classes:

obtained: 0 1 1 1 1 0

distances: (let us use Manhattan distance)

to class 1: 5 **to class 3:** 2

to class 2: 4 **to class 4:** 3

Tricks of the Trade

- A good book to make ANNs working:
G. B. Orr and K. Müller. *Neural Networks: Tricks of the Trade*. 1998. Springer.
- Stochastic Gradient
- Initialization
- Learning Rate and Learning Rate Decay
- Weight Decay

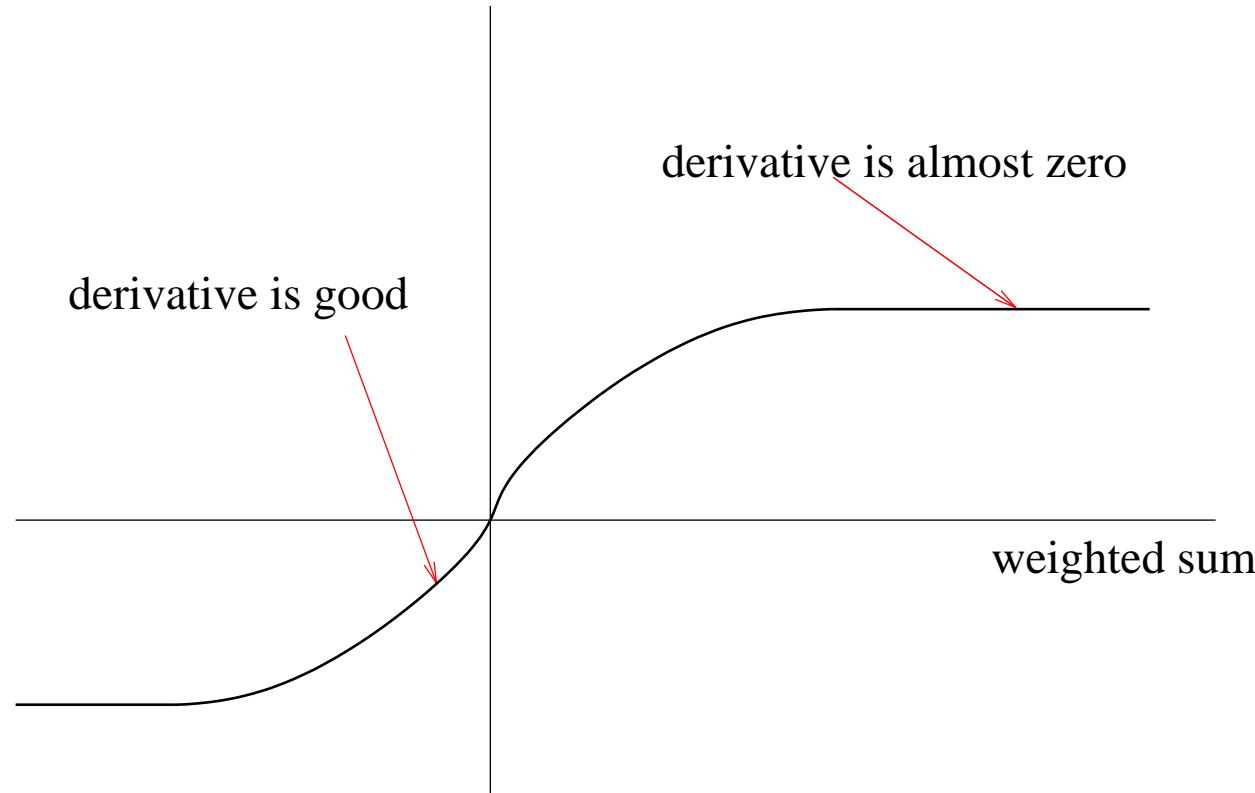
Stochastic Gradient Descent

- The gradient descent technique is **batch**:
 - First accumulate the gradient from all examples, then adjust the parameters
 - What if the data set is very big, and contains **redundancies**?
- Other solution: **stochastic** gradient descent
 - Adjust the parameters after each example instead
 - Stochastic: we approximate the full gradient with its estimate at each example
 - Nevertheless, convergence proofs exist for such method.
 - Moreover: **much faster** for large data sets!!!
- Other gradient techniques: second order methods such as **conjugate gradient**: good for small data sets

Initialization

- How should we initialize the parameters of an ANN?
- One common problem: **saturation**

When the weighted sum is big, the output of the tanh (or sigmoid) saturates, and the gradient tends towards 0



Initialization

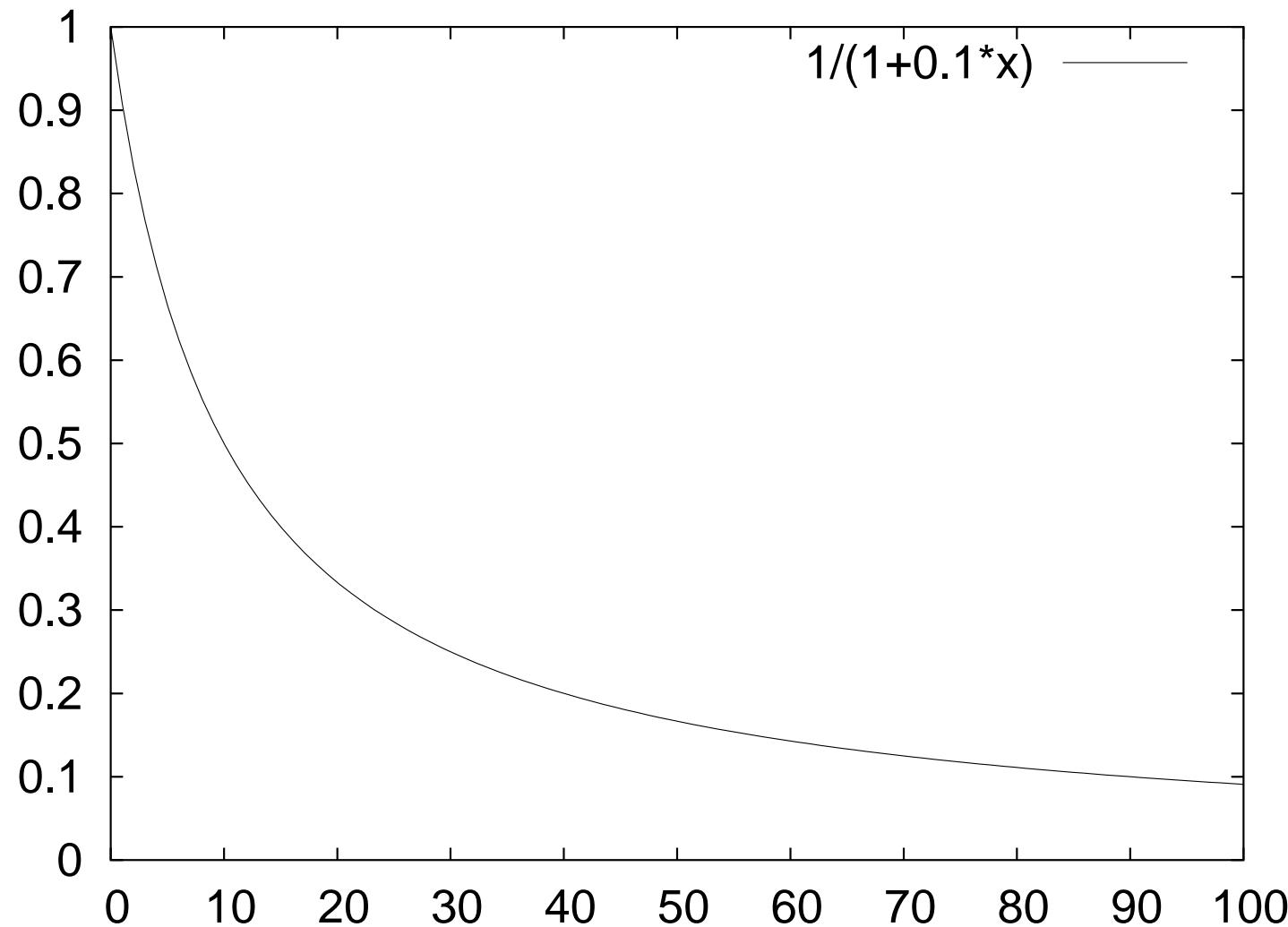
- Hence, we should initialize the parameters such that the average weighted sum is in the linear part of the transfer function:
 - See Leon Bottou's thesis for details
 - input data: normalized with zero mean and unit variance,
 - targets:
 - regression: normalized with zero mean and unit variance,
 - classification:
 - output transfer function is tanh: 0.6 and -0.6
 - output transfer function is sigmoid: 0.8 and 0.2
 - output transfer function is linear: 0.6 and -0.6
 - parameters: uniformly distributed in $\left[\frac{-1}{\sqrt{\text{fan in}}}, \frac{1}{\sqrt{\text{fan in}}} \right]$

Learning Rate and Learning Rate Decay

- How to select the learning rate η ?
- If η is too big: the optimization diverges
- If η is too small: the optimization is very slow and may be stuck into local minima
- One solution: **progressive decay**
 - initial learning rate $\eta = \eta_0$
 - learning rate decay η_d
 - At each iteration s :

$$\eta(s) = \frac{\eta_0}{(1 + s \cdot \eta_d)}$$

Learning Rate Decay (Graphical View)



Weight Decay

- One way to control the capacity: **regularization**
- For MLPs, when the weights tend to 0, sigmoid or tanh functions are **almost linear**, hence with low capacity
- **Weight decay**: penalize solutions with high weights and bias (in amplitude)

$$C(D_n, \theta) = \sum_{p=1}^n L(y(p), \hat{y}(p)) + \frac{\beta}{2} \sum_{j=1}^{|\theta|} \theta_j^2$$

where β controls the weight decay.

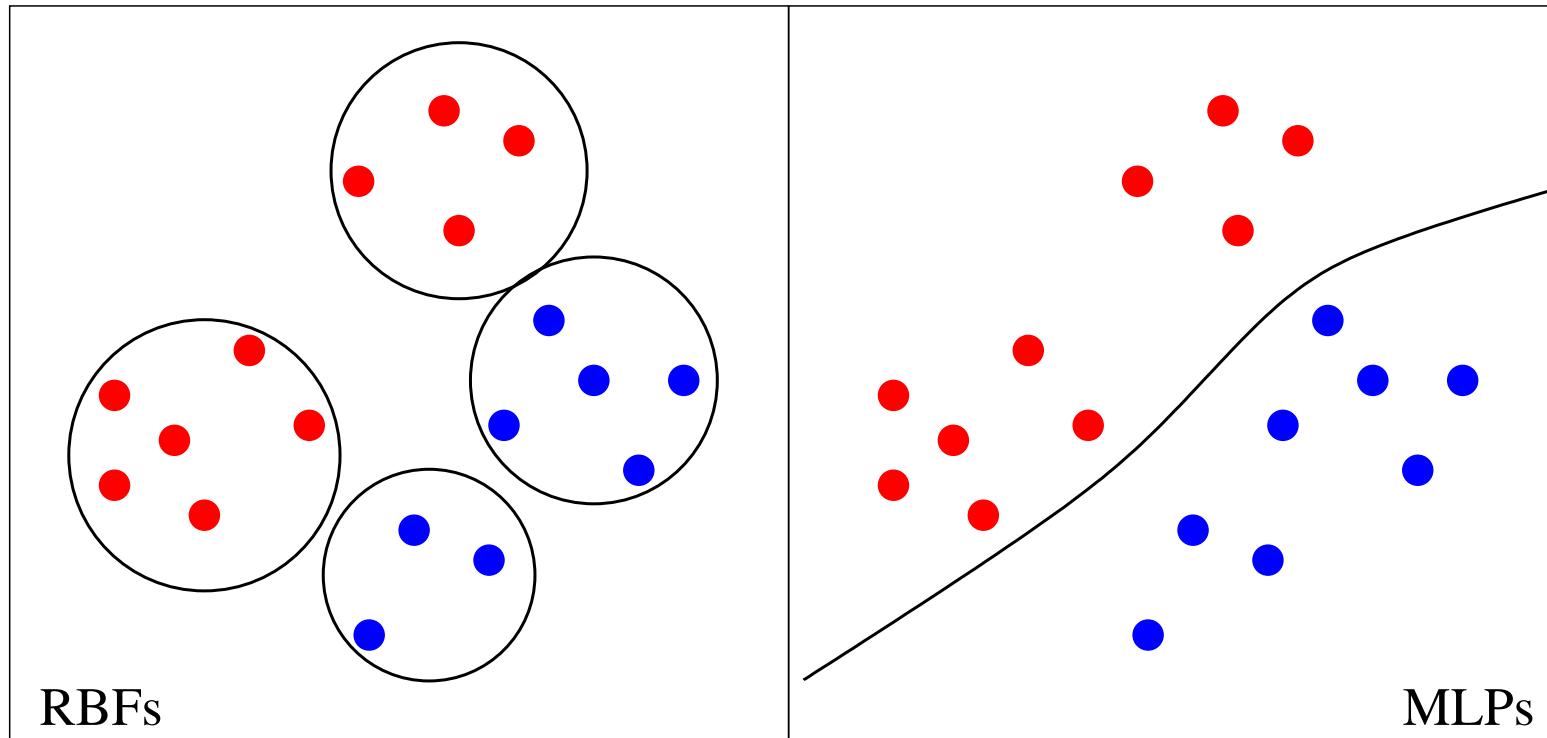
- Easy to implement:

$$\theta_j^{s+1} = \theta_j^s - \sum_{p=1}^n \eta \frac{\partial L(y(p), \hat{y}(p))}{\partial \theta_j^s} - \eta \cdot \beta \cdot \theta_j^s$$

Radial Basis Function (RBF) Models

- Normal MLP but the hidden layer l is encoded as follows:
 - $s_i^l = -\frac{1}{2} \sum_j (\gamma_{i,j}^l)^2 \cdot (y_j^{l-1} - \mu_{i,j}^l)^2$
 - $y_i^l = \exp(s_i^l)$
- The parameters of such layer l are $\theta_l = \{\gamma_{i,j}^l, \mu_{i,j}^l : \forall i, j\}$
- These layers are useful to extract **local** features (whereas tanh layers extract **global** features)
- Initialization: use **K-Means** for instance

Difference Between RBFs and MLPs



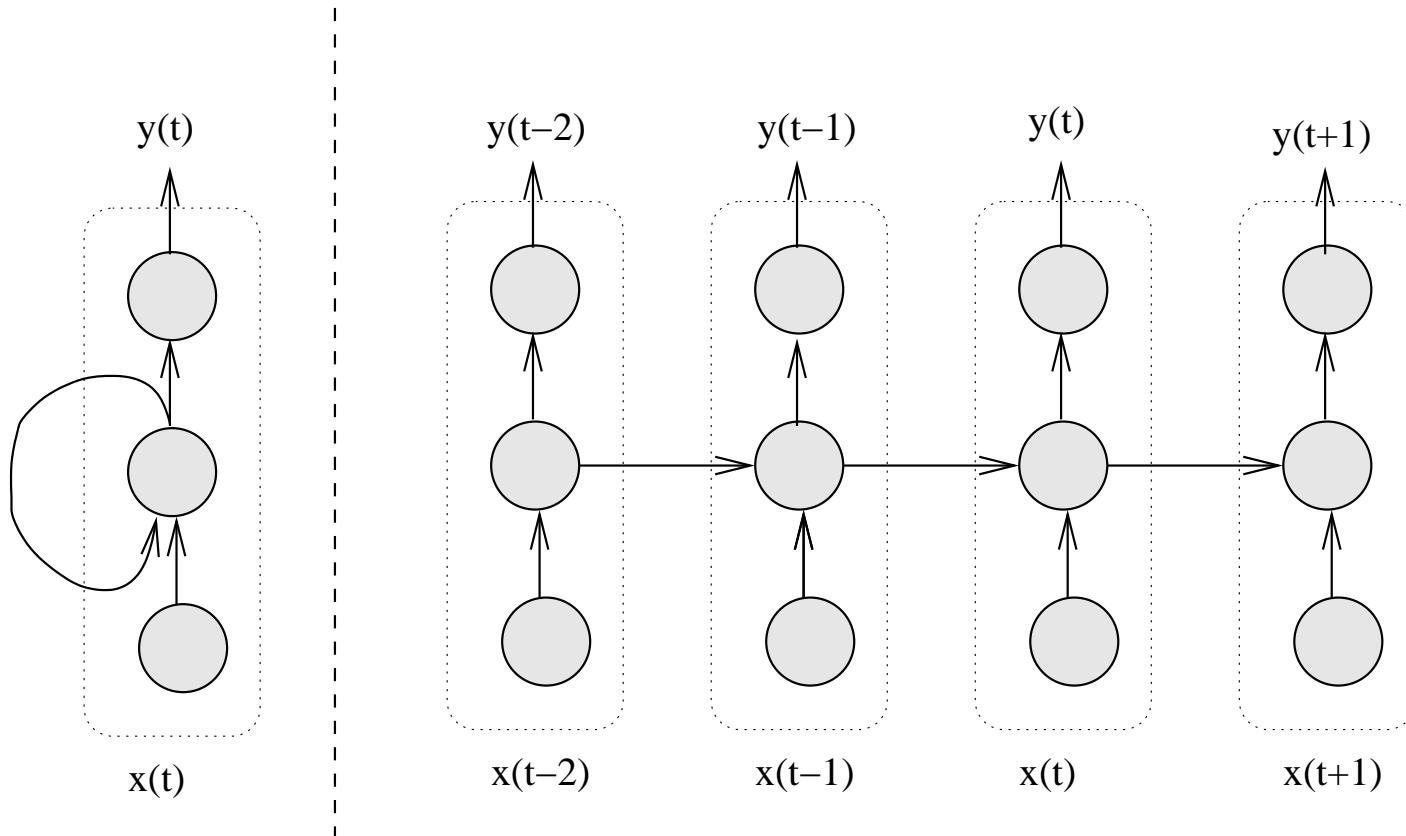
Recurrent Neural Networks

- Such models admit layers l with integration functions $s_i^l = f(y_j^{l+k})$ where $k \geq 0$, hence loops, or **recurrences**
- Such layers l encode the notion of a **temporal state**
- Useful to search for relations in temporal data
- Do not need to specify the exact delay in the relation
- In order to compute the gradient, one must **enfold** in time all the relations between the data:

$$s_i^l(t) = f(y_j^{l+k}(t-1)) \text{ where } k \geq 0$$

- Hence, need to **exhibit the whole time-dependent graph** between input sequence and output sequence
- **Caveat:** it can be shown that the gradient **vanishes exponentially fast** through time

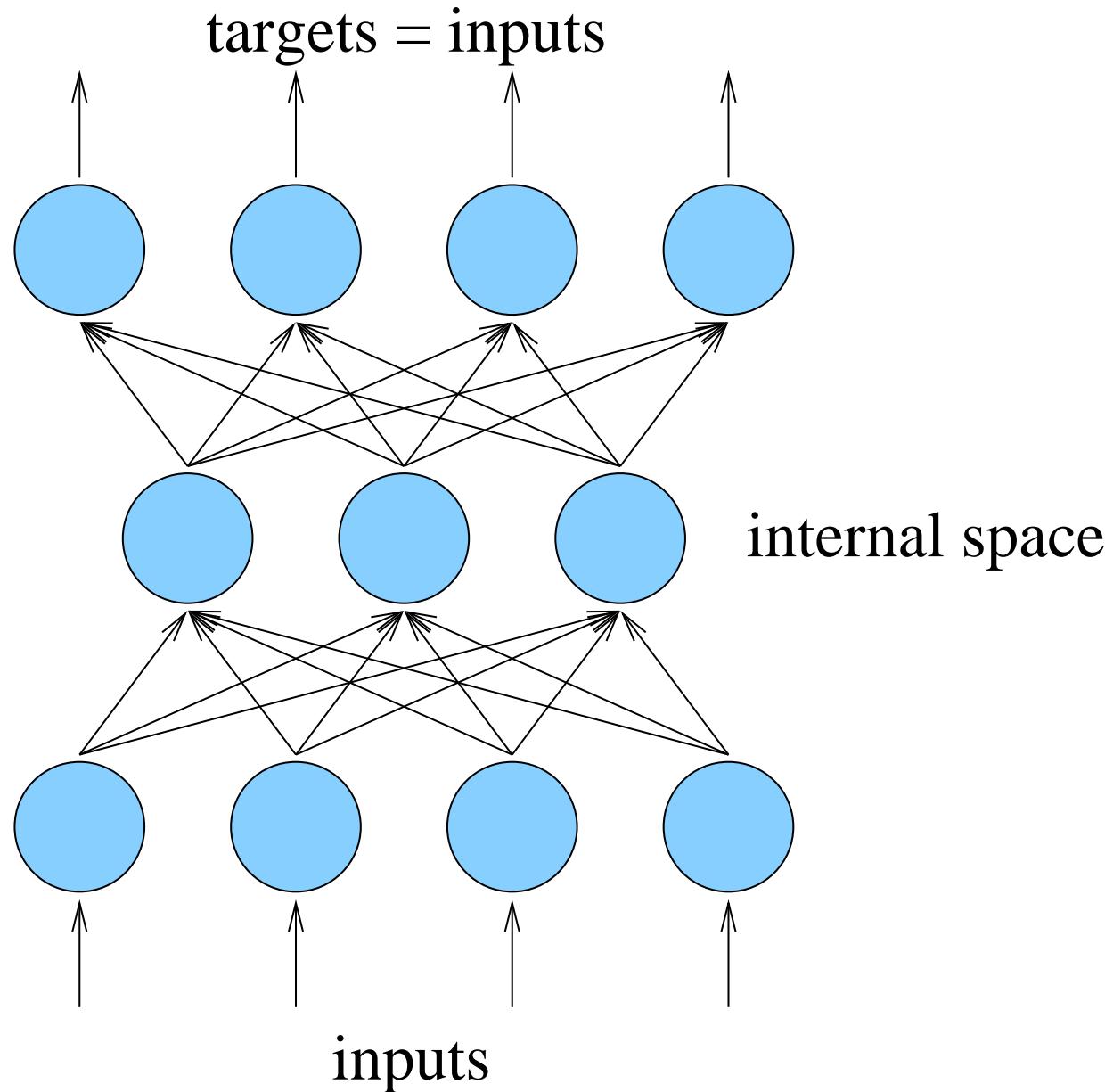
Recurrent NNs (Graphical View)



Auto Associative Networks

- **Apparent objective:** learn to reconstruct the input
- In such models, the target vector is the same as the input vector!
- **Real objective:** learn an internal representation of the data
- If there is one hidden layer of linear units, then after learning, the model implements a **principal component analysis** with the first N principal components (N is the number of hidden units).
- If there are non-linearities and more hidden layers, then the system implements a kind of non-linear principal component analysis.

Auto Associative Nets (Graphical View)



Mixture of Experts

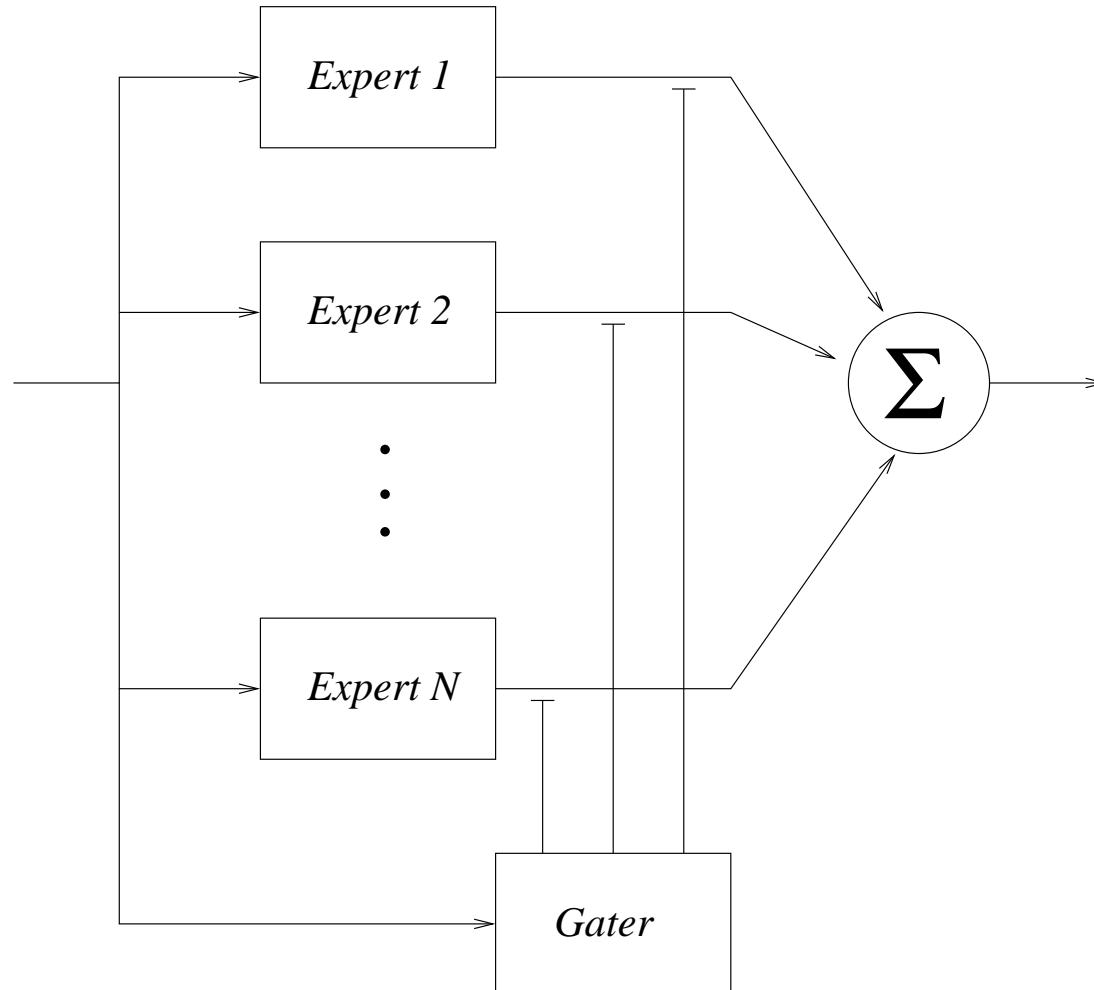
- Let $f_i(x; \theta_{f_i})$ be a differentiable parametric function
- Let there be N such functions f_i .
- Let $g(x; \theta_g)$ be a **gater**: a differentiable function with N positive outputs such that

$$\sum_{i=1}^N g(x; \theta_g)[i] = 1$$

- Then a **mixture of experts** is a function $h(x; \theta)$:

$$h(x; \theta) = \sum_{i=1}^N g(x; \theta_g)[i] \cdot f_i(x; \theta_{f_i})$$

Mixture of Experts - (Graphical View)



Mixture of Experts - Training

- We can compute the gradient with respect to every parameters:
 - parameters in the expert f_i :

$$\begin{aligned}\frac{\partial h(x; \theta)}{\partial \theta_{f_i}} &= \frac{\partial h(x; \theta)}{\partial f_i(x; \theta_{f_i})} \cdot \frac{\partial f_i(x; \theta_{f_i})}{\partial \theta_{f_i}} \\ &= g(x; \theta_g)[i] \cdot \frac{\partial f_i(x; \theta_{f_i})}{\partial \theta_{f_i}}\end{aligned}$$

- parameters in the gater g :

$$\begin{aligned}\frac{\partial h(x; \theta)}{\partial \theta_g} &= \sum_{i=1}^N \frac{\partial h(x; \theta)}{\partial g(x; \theta_g)[i]} \cdot \frac{\partial g(x; \theta_g)[i]}{\partial \theta_g} \\ &= \sum_{i=1}^N f_i(x; \theta_{f_i}) \cdot \frac{\partial g(x; \theta_g)[i]}{\partial \theta_g}\end{aligned}$$

Mixture of Experts - Discussion

- The gater implements a **soft partition** of the input space
(to be compared with, say, K-Means → **hard partition**)
- Useful when there might be **regimes** in the data
- Extension: **hierarchical mixture of experts**, when the experts are themselves represented as mixtures of experts!
- Special case: when the experts can be trained by EM, the mixture and the hierarchical mixture can also be trained by EM.