
An Introduction to

Statistical Machine Learning

- Neural Networks -

Samy Bengio

bengio@idiap.ch

Dalle Molle Institute for Perceptual Artificial Intelligence (IDIAP)

CP 592, rue du Simplon 4

1920 Martigny, Switzerland

http://www.idiap.ch/~bengio

IDIAP - May 12, 2003

Artificial Neural Networks and Gradient Descent

1. Artificial Neural Networks

2. Multi Layer Perceptrons

3. Gradient Descent

4. ANN for Classification

5. Tricks of the Trade

6. Other ANN Models

Artificial Neural Networks 2

Artificial Neural Networks

x1

y = g(s)
s = f(x;w)

x2

w1 w2

y

• An ANN is a set of units (neurons) connected to each other

• Each unit may have multiple inputs but have one output

• Each unit performs 2 functions:

◦ integration: s = f(x; θ)

◦ transfer: y = g(s)

Artificial Neural Networks 3

Artificial Neural Networks: Functions

• Example of integration function: s = θ0 +
∑

i

xi · θi

• Examples of transfer functions:

◦ tanh: y = tanh(s)

◦ sigmoid: y =
1

1 + exp(−s)

• Some units receive inputs from the outside world.

• Some units generate outputs to the outside world.

• The other units are often named hidden.

• Hence, from the outside, an ANN can be viewed as a function.

• There are various forms of ANNs. The most popular is the

Multi Layer Perceptron (MLP).

Artificial Neural Networks 4

Transfer Functions (Graphical View)

y = sigmoid(x) y = xy = tanh(x)

1 1

−1

Artificial Neural Networks 5

Multi Layer Perceptrons (Graphical View)

input layer

hidden layers

output layer

outputs

inputs

units

parameters

Artificial Neural Networks 6

Multi Layer Perceptrons

• An MLP is a function: ŷ = MLP(x; θ)

• The parameters θ = {wl
i,j , b

l
i : ∀i, j, l}

• From now on, let xi(p) be the ith value in the pth example

represented by vector x(p) (and when possible, let us drop p).

• Each layer l (1 ≤ l ≤ M) is fully connected to the previous layer

• Integration: sl
i = bl

i +
∑

j

yl−1
j · wl

i,j

• Transfer: yl
i = tanh(sl

i) or yl
i = sigmoid(sl

i) or yl
i = sl

i

• The output of the zeroth layer contains the inputs y0
i = xi

• The output of the last layer M contains the outputs ŷi = yM
i

Artificial Neural Networks 7

Multi Layer Perceptrons (Characteristics)

• An MLP can approximate any continuous functions

• However, it needs to have at least 1 hidden layer (sometimes

easier with 2), and enough units in each layer

• Moreover, we have to find the correct value of the parameters θ

• How can we find these parameters?

• Answer: optimize a given criterion using a gradient method.

• Note: capacity controlled by the number of parameters

Artificial Neural Networks 8

Separability

Linear Linear+Sigmoid

Linear+Sigmoid+Linear Linear+Sigmoid+Linear+Sigmoid+Linear

Artificial Neural Networks 9

Gradient Descent

• Objective: minimize a criterion C over a set of data Dn:

C(Dn, θ) =

n
∑

p=1

L(y(p), ŷ(p))

where

ŷ(p) = MLP(x(p); θ)

• We are searching for the best parameters θ:

θ∗ = arg min
θ

C(Dn, θ)

• Gradient descent: an iterative procedure where, at each

iteration s we modify the parameters θ:

θs+1 = θs − η
∂C(Dn, θs)

∂θs

where η is the learning rate.

Artificial Neural Networks 10

Gradient Descent (Graphical View)

gradient (slope)

global minimum

local minimum

Artificial Neural Networks 11

Gradient Descent: The Basics

Chain rule:

• if a = f(b) and b = g(c)

• then
∂a

∂c
=

∂a

∂b
· ∂b

∂c
= f ′(b) · g′(c)

c

b = g(c)

a = f(b)

Artificial Neural Networks 12

Gradient Descent: The Basics

Sum rule:

• if a = f(b, c) and b = g(d) and c = h(d)

• then
∂a

∂d
=

∂a

∂b
· ∂b

∂d
+

∂a

∂c
· ∂c

∂d

• ∂a

∂d
=

∂f(b, c)

∂b
· g′(d) +

∂f(b, c)

∂c
· h′(d)

a = f(b,c)

b = g(d) c = h(d)

d

Artificial Neural Networks 13

Gradient Descent Basics (Graphical View)

inputs

outputs

targets

criterion

back−propagation
of the error

parameter
to tune

Artificial Neural Networks 14

Gradient Descent: Criterion

• First: we need to pass the gradient through the criterion

• The global criterion C is:

C(Dn, θ) =

n
∑

p=1

L(y(p), ŷ(p))

• Example: the mean squared error criterion (MSE):

L(y, ŷ) =
d

∑

i=1

1

2
(yi − ŷi)

2

• And the derivative with respect to the output ŷi:

∂L(y, ŷ)

∂ŷi

= ŷi − yi

Artificial Neural Networks 15

Gradient Descent: Last Layer

• Second: the derivative with respect to the parameters of the

last layer M

ŷi = yM
i = tanh(sM

i)

sM
i = bM

i +
∑

j

yM−1
j · wM

i,j

• Hence the derivative with respect to wM
i,j is:

∂ŷi

∂wM
i,j

=
∂ŷi

∂sM
i

· ∂sM
i

∂wM
i,j

= (1 − (ŷi)
2) · yM−1

j

• And the derivative with respect to bM
i is:

∂ŷi

∂bM
i

=
∂ŷi

∂sM
i

· ∂sM
i

∂bM
i

= (1 − (ŷi)
2) · 1

Artificial Neural Networks 16

Gradient Descent: Other Layers

• Third: the derivative with respect to the output of a hidden

layer yl
j

∂ŷi

∂yl
j

=
∑

k

∂ŷi

∂yl+1
k

· ∂yl+1
k

∂yl
j

where

∂yl+1
k

∂yl
j

=
∂yl+1

k

∂sl+1
k

· ∂sl+1
k

∂yl
j

= (1 − (yl+1
k)2) · wl+1

k,j

and
∂ŷi

∂yM
i

= 1 and
∂ŷi

∂yM
k 6=i

= 0

Artificial Neural Networks 17

Gradient Descent: Other Parameters

• Fourth: the derivative with respect to the parameters of a

hidden layer yl
j

∂ŷi

∂wl
j,k

=
∂ŷi

∂yl
j

·
∂yl

j

∂wl
j,k

=
∂ŷi

∂yl
j

· yl−1
k

and

∂ŷi

∂bl
j

=
∂ŷi

∂yl
j

·
∂yl

j

∂bl
j

=
∂ŷi

∂yl
j

· 1

Artificial Neural Networks 18

Gradient Descent: Global Algorithm

1. For each iteration

(a) Initialize gradients ∂C
∂θi

= 0 for each θi

(b) For each example z(p) = (x(p), y(p))

i. Forward phase: compute ŷ(p) = MLP(x(p), θ)

ii. Compute ∂L(y(p),ŷ(p))
∂ŷ(p)

iii. For each layer l from M to 1:

A. Compute ∂ŷ(p)

∂yl
j

B. Compute
∂yl

j

∂bl
j

and
∂yl

j

∂wl
j,k

C. Accumulate gradients:

∂C

∂bl
j

=
∂C

∂bl
j

+
∂C

∂L
· ∂L

∂ŷ(p)
· ∂ŷ(p)

∂yl
j

·
∂yl

j

∂bl
j

∂C

∂wl
j,k

=
∂C

∂wl
j,k

+
∂C

∂L
· ∂L

∂ŷ(p)
· ∂ŷ(p)

∂yl
j

·
∂yl

j

∂wl
j,k

(c) Update the parameters: θs+1
i = θs

i − η · ∂C
∂θs

i

Artificial Neural Networks 19

Gradient Descent: An Example (1)

Let us start with a simple MLP:

1.3

0.7 0.6

−0.3

1.2

1.1

linear

tanhtanh

0.3

2.3

−0.6

Artificial Neural Networks 20

Gradient Descent: An Example (2)

We forward one example and compute its MSE:

1.3

0.7 0.6

−0.3

1.2

1.1

linear

tanhtanh

0.8 −0.8

0.62 1.58

0.55 0.92

0.3
1.07

1.07

2.3

−0.6

targetMSE =1.23
−0.5

Artificial Neural Networks 21

Gradient Descent: An Example (3)

We backpropagate the gradient everywhere:

1.3

0.7 0.6

−0.3

1.2

1.1

linear

tanhtanh

0.8 −0.8

0.62 1.58

0.55 0.92

0.3
1.07

1.07

dy=−0.94
2.3

db=−0.66

dw=−0.24

dy = 1.57

ds = 1.57

ds=−0.66 db=0.29ds=0.29

dy=1.89

dw=−0.53

−0.6
dw=0.87 dw=1.44

db=1.57

dw=0.24dw=0.53

targetMSE =1.23

dMSE =1.57
−0.5

Artificial Neural Networks 22

Gradient Descent: An Example (4)

We modify each parameter with learning rate 0.1:

1.19

0.81 0.65

0.91

1.23

linear

tanhtanh

−0.1

2.24

−0.77

−0.35

Artificial Neural Networks 23

Gradient Descent: An Example (5)

We forward again the same example and compute its (smaller)

MSE:

1.19

0.81 0.65

0.91

1.23

linear

tanhtanh

0.8 −0.8

0.92 1.45

0.73 0.89

−0.01
0.24

0.24

2.24

−0.77

targetMSE =0.27
−0.5

−0.35

Artificial Neural Networks 24

ANN for Binary Classification

• One output with target coded as {−1, 1} or {0, 1} depending

on the last layer output function (linear, sigmoid, tanh, ...)

• For a given output, the associated class corresponds to the

nearest target.

• How to obtain class posterior probabilities:

◦ use a sigmoid with targets {0, 1}
◦ the output will encode P (Y = 1|X = x)

• Note: we do not optimize directly the classification error...

Artificial Neural Networks 25

ANN for Multiclass Classification

• Simplest solution: one-hot encoding

◦ One output per class, coded for instance as (0, · · · , 1, · · · , 0)

◦ For a given output, the associated class corresponds to the

index of the maximum value in the output vector

◦ How to obtain class posterior probabilities:

◦ use a softmax: ŷi =
exp(si)

∑

j

exp(sj)

◦ each output i will encode P (Y = i|X = x)

• Otherwise: each class corresponds to a different binary code

◦ For example for a 4-class problem, we could have an 8-dim

code for each class

◦ For a given output, the associated class corresponds to the

nearest code (according to a given distance)

◦ Example: Error Correcting Output Codes (ECOC)

Artificial Neural Networks 26

Error Correcting Output Codes

• Let us represent a 4-class problem with 6 bits:

class 1: 1 1 0 0 0 1

class 2: 1 0 0 0 1 0

class 3: 0 1 0 1 0 0

class 4: 0 0 1 0 0 0

• We then create 6 classifiers (or 1 classifier with 6 outputs)

• For example: the first classifier will try to separate classes 1

and 2 from classes 3 and 4

• When a new example comes, we compute the distance between

the code obtained by the 6 classifiers and the 4 classes:

obtained: 0 1 1 1 1 0

distances: (let us use Manhatan distance)
to class 1: 5

to class 2: 4

to class 3: 2

to class 4: 3

Artificial Neural Networks 27

Tricks of the Trade

• A good book to make ANNs working:

G. B. Orr and K. Müller. Neural Networks: Tricks of the

Trade. 1998. Springer.

• Stochastic Gradient

• Initialization

• Learning Rate and Learning Rate Decay

• Weight Decay

Artificial Neural Networks 28

Stochastic Gradient Descent

• The gradient descent technique is batch:

◦ First accumulate the gradient from all examples, then

adjust the parameters

◦ What if the data set is very big, and contains redundencies?

• Other solution: stochastic gradient descent

◦ Adjust the parameters after each example instead

◦ Stochastic: we approximate the full gradient with its

estimate at each example

◦ Nevertheless, convergence proofs exist for such method.

◦ Moreover: much faster for large data sets!!!

• Other gradient techniques: second order methods such as

conjugate gradient: good for small data sets

Artificial Neural Networks 29

Initialization

• How should we initialize the parameters of an ANN?

• One common problem: saturation

When the weighted sum is big, the output of the tanh

(or sigmoid) saturates, and the gradient tends towards 0

derivative is almost zero

derivative is good

weighted sum

Artificial Neural Networks 30

Initialization

• Hence, we should initialize the parameters such that the

average weighted sum is in the linear part of the transfer

function:

◦ See Leon Bottou’s thesis for details

◦ input data: normalized with zero mean and unit variance,

◦ targets:

◦ regression: normalized with zero mean and unit variance,

◦ classification:

◦ output transfer function is tanh: 0.6 and -0.6

◦ output transfer function is sigmoid: 0.8 and 0.2

◦ output transfer function is linear: 0.6 and -0.6

◦ parameters: uniformly distributed in

[

−1√
fan in

, 1√
fan in

]

Artificial Neural Networks 31

Learning Rate and Learning Rate Decay

• How to select the learning rate η ?

• If η is too big: the optimization diverges

• If η is too small: the optimization is very slow and may be

stuck into local minima

• One solution: progressive decay

◦ initial learning rate η = η0

◦ learning rate decay ηd

◦ At each iteration s:

η(s) =
η0

(1 + s · ηd)

Artificial Neural Networks 32

Learning Rate Decay (Graphical View)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

1/(1+0.1*x)

Artificial Neural Networks 33

Weight Decay

• One way to control the capacity: regularization

• For MLPs, when the weights tend to 0, sigmoid or tanh

functions are almost linear, hence with low capacity

• Weight decay: penalize solutions with high weights and bias

(in amplitude)

C(Dn, θ) =
n

∑

p=1

L(y(p), ŷ(p)) +
β

2

|θ|
∑

j=1

θ2
j

where β controls the weight decay.

• Easy to implement:

θs+1
j = θs

j −
n

∑

p=1

η
∂L(y(p), ŷ(p))

∂θs
j

− η · β · θs
j

Artificial Neural Networks 34

Radial Basis Function (RBF) Models

• Normal MLP but the hidden layer l is encoded as follows:

◦ sl
i = −1

2

∑

j

(γl
i,j)

2 · (yl−1
j − µl

i,j)
2

◦ yl
i = exp(sl

i)

• The parameters of such layer l are θl = {γl
i,j , µ

l
i,j : ∀i, j}

• These layers are useful to extract local features (whereas tanh

layers extract global features)

• Initialization: use K-Means for instance

Artificial Neural Networks 35

Difference Between RBFs and MLPs

RBFs MLPs

Artificial Neural Networks 36

Recurrent Neural Networks

• Such models admit layers l with integration functions

sl
i = f(yl+k

j) where k ≥ 0, hence loops, or recurrences

• Such layers l encode the notion of a temporal state

• Useful to search for relations in temporal data

• Do not need to specify the exact delay in the relation

• In order to compute the gradient, one must enfold in time all

the relations between the data:

sl
i(t) = f(yl+k

j (t − 1)) where k ≥ 0

• Hence, need to exhibit the whole time-dependent graph

between input sequence and output sequence

• Caveat: it can be shown that the gradient vanishes

exponentially fast through time

Artificial Neural Networks 37

Recurrent NNs (Graphical View)

y(t)

x(t)

y(t)

x(t)

y(t−2) y(t−1) y(t+1)

x(t−2) x(t−1) x(t+1)

Artificial Neural Networks 38

Auto Associative Networks

• Apparent objective: learn to reconstruct the input

• In such models, the target vector is the same as the input

vector!

• Real objective: learn an internal representation of the data

• If there is one hidden layer of linear units, then after learning,

the model implements a principal component analysis with the

first N principal components (N is the number of hidden

units).

• If there are non-linearities and more hidden layers, then the

system implements a kind of non-linear principal component

analysis.

Artificial Neural Networks 39

Auto Associative Nets (Graphical View)

inputs

targets = inputs

internal space

Artificial Neural Networks 40

Mixture of Experts

• Let fi(x; θfi
) be a differentiable parametric function

• Let there be N such functions fi.

• Let g(x; θg) be a gater: a differentiable function with N

positive outputs such that

N
∑

i=1

g(x; θg)[i] = 1

• Then a mixture of experts is a function h(x; θ):

h(x; θ) =
N

∑

i=1

g(x; θg)[i] · fi(x; θfi
)

Artificial Neural Networks 41

Mixture of Experts - (Graphical View)

Expert 1

Expert N

Expert 2

.

.

.
Σ

Gater

Artificial Neural Networks 42

Mixture of Experts - Training

• We can compute the gradient with respect to every parameters:

◦ parameters in the expert fi:

∂h(x; θ)

∂θfi

=
∂h(x; θ)

∂fi(x; θfi
)
· ∂fi(x; θfi

)

∂θfi

= g(x; θg)[i] ·
∂fi(x; θfi

)

∂θfi

◦ parameters in the gater g:

∂h(x; θ)

∂θg

=
N

∑

i=1

∂h(x; θ)

∂g(x; θg)[i]
· ∂g(x; θg)[i]

∂θg

=
N

∑

i=1

fi(x; θfi
) · ∂g(x; θg)[i]

∂θg

Artificial Neural Networks 43

Mixture of Experts - Discussion

• The gater implements a soft partition of the input space

(to be compared with, say, K-Means → hard partition)

• Useful when there might be regimes in the data

• Extension: hierarchical mixture of experts, when the experts

are themselves represented as mixtures of experts!

• Special case: when the experts can be trained by EM, the

mixture and the hierachical mixture can also be trained by EM.

Artificial Neural Networks 44

