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Artificial Neural Networks

x1

y = g(s)
s = f(x;w)

x2

w1 w2

y

• An ANN is a set of units (neurons) connected to each other

• Each unit may have multiple inputs but have one output

• Each unit performs 2 functions:

◦ integration: s = f(x; θ)

◦ transfer: y = g(s)
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Artificial Neural Networks: Functions

• Example of integration function: s = θ0 +
∑

i

xi · θi

• Examples of transfer functions:

◦ tanh: y = tanh(s)

◦ sigmoid: y =
1

1 + exp(−s)

• Some units receive inputs from the outside world.

• Some units generate outputs to the outside world.

• The other units are often named hidden.

• Hence, from the outside, an ANN can be viewed as a function.

• There are various forms of ANNs. The most popular is the

Multi Layer Perceptron (MLP).
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Transfer Functions (Graphical View)

y = sigmoid(x) y = xy = tanh(x)
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Multi Layer Perceptrons (Graphical View)

input layer

hidden layers

output layer

outputs

inputs

units

parameters
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Multi Layer Perceptrons

• An MLP is a function: ŷ = MLP(x; θ)

• The parameters θ = {wl
i,j , b

l
i : ∀i, j, l}

• From now on, let xi(p) be the ith value in the pth example

represented by vector x(p) (and when possible, let us drop p).

• Each layer l (1 ≤ l ≤ M) is fully connected to the previous layer

• Integration: sl
i = bl

i +
∑

j

yl−1
j · wl

i,j

• Transfer: yl
i = tanh(sl

i) or yl
i = sigmoid(sl

i) or yl
i = sl

i

• The output of the zeroth layer contains the inputs y0
i = xi

• The output of the last layer M contains the outputs ŷi = yM
i
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Multi Layer Perceptrons (Characteristics)

• An MLP can approximate any continuous functions

• However, it needs to have at least 1 hidden layer (sometimes

easier with 2), and enough units in each layer

• Moreover, we have to find the correct value of the parameters θ

• How can we find these parameters?

• Answer: optimize a given criterion using a gradient method.

• Note: capacity controlled by the number of parameters
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Separability

Linear Linear+Sigmoid

Linear+Sigmoid+Linear Linear+Sigmoid+Linear+Sigmoid+Linear
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Gradient Descent

• Objective: minimize a criterion C over a set of data Dn:

C(Dn, θ) =

n
∑

p=1

L(y(p), ŷ(p))

where

ŷ(p) = MLP(x(p); θ)

• We are searching for the best parameters θ:

θ∗ = arg min
θ

C(Dn, θ)

• Gradient descent: an iterative procedure where, at each

iteration s we modify the parameters θ:

θs+1 = θs − η
∂C(Dn, θs)

∂θs

where η is the learning rate.
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Gradient Descent (Graphical View)

gradient (slope)

global minimum

local minimum
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Gradient Descent: The Basics

Chain rule:

• if a = f(b) and b = g(c)

• then
∂a

∂c
=

∂a

∂b
· ∂b

∂c
= f ′(b) · g′(c)

c

b = g(c)

a = f(b)
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Gradient Descent: The Basics

Sum rule:

• if a = f(b, c) and b = g(d) and c = h(d)

• then
∂a

∂d
=

∂a

∂b
· ∂b

∂d
+

∂a

∂c
· ∂c

∂d

• ∂a

∂d
=

∂f(b, c)

∂b
· g′(d) +

∂f(b, c)

∂c
· h′(d)

a = f(b,c)

b = g(d) c = h(d)

d
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Gradient Descent Basics (Graphical View)

inputs

outputs

targets

criterion

back−propagation
of the error

parameter
to tune
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Gradient Descent: Criterion

• First: we need to pass the gradient through the criterion

• The global criterion C is:

C(Dn, θ) =

n
∑

p=1

L(y(p), ŷ(p))

• Example: the mean squared error criterion (MSE):

L(y, ŷ) =
d

∑

i=1

1

2
(yi − ŷi)

2

• And the derivative with respect to the output ŷi:

∂L(y, ŷ)

∂ŷi

= ŷi − yi
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Gradient Descent: Last Layer

• Second: the derivative with respect to the parameters of the

last layer M

ŷi = yM
i = tanh(sM

i )

sM
i = bM

i +
∑

j

yM−1
j · wM

i,j

• Hence the derivative with respect to wM
i,j is:

∂ŷi

∂wM
i,j

=
∂ŷi

∂sM
i

· ∂sM
i

∂wM
i,j

= (1 − (ŷi)
2) · yM−1

j

• And the derivative with respect to bM
i is:

∂ŷi

∂bM
i

=
∂ŷi

∂sM
i

· ∂sM
i

∂bM
i

= (1 − (ŷi)
2) · 1
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Gradient Descent: Other Layers

• Third: the derivative with respect to the output of a hidden

layer yl
j

∂ŷi

∂yl
j

=
∑

k

∂ŷi

∂yl+1
k

· ∂yl+1
k

∂yl
j

where

∂yl+1
k

∂yl
j

=
∂yl+1

k

∂sl+1
k

· ∂sl+1
k

∂yl
j

= (1 − (yl+1
k )2) · wl+1

k,j

and
∂ŷi

∂yM
i

= 1 and
∂ŷi

∂yM
k 6=i

= 0
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Gradient Descent: Other Parameters

• Fourth: the derivative with respect to the parameters of a

hidden layer yl
j

∂ŷi

∂wl
j,k

=
∂ŷi

∂yl
j

·
∂yl

j

∂wl
j,k

=
∂ŷi

∂yl
j

· yl−1
k

and

∂ŷi

∂bl
j

=
∂ŷi

∂yl
j

·
∂yl

j

∂bl
j

=
∂ŷi

∂yl
j

· 1
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Gradient Descent: Global Algorithm

1. For each iteration

(a) Initialize gradients ∂C
∂θi

= 0 for each θi

(b) For each example z(p) = (x(p), y(p))

i. Forward phase: compute ŷ(p) = MLP(x(p), θ)

ii. Compute ∂L(y(p),ŷ(p))
∂ŷ(p)

iii. For each layer l from M to 1:

A. Compute ∂ŷ(p)

∂yl
j

B. Compute
∂yl

j

∂bl
j

and
∂yl

j

∂wl
j,k

C. Accumulate gradients:

∂C

∂bl
j

=
∂C

∂bl
j

+
∂C

∂L
· ∂L

∂ŷ(p)
· ∂ŷ(p)

∂yl
j

·
∂yl

j

∂bl
j

∂C

∂wl
j,k

=
∂C

∂wl
j,k

+
∂C

∂L
· ∂L

∂ŷ(p)
· ∂ŷ(p)

∂yl
j

·
∂yl

j

∂wl
j,k

(c) Update the parameters: θs+1
i = θs

i − η · ∂C
∂θs

i
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Gradient Descent: An Example (1)

Let us start with a simple MLP:

1.3

0.7 0.6

−0.3

1.2

1.1

linear

tanhtanh

0.3

2.3

−0.6
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Gradient Descent: An Example (2)

We forward one example and compute its MSE:

1.3

0.7 0.6

−0.3

1.2

1.1

linear

tanhtanh

0.8 −0.8

0.62 1.58

0.55 0.92

0.3
1.07

1.07

2.3

−0.6

targetMSE =1.23
−0.5 
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Gradient Descent: An Example (3)

We backpropagate the gradient everywhere:

1.3

0.7 0.6

−0.3

1.2

1.1

linear

tanhtanh

0.8 −0.8

0.62 1.58

0.55 0.92

0.3
1.07

1.07

dy=−0.94
2.3

db=−0.66

dw=−0.24

dy = 1.57

ds = 1.57

ds=−0.66 db=0.29ds=0.29

dy=1.89

dw=−0.53

−0.6
dw=0.87 dw=1.44

db=1.57

dw=0.24dw=0.53

targetMSE =1.23

dMSE =1.57
−0.5 
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Gradient Descent: An Example (4)

We modify each parameter with learning rate 0.1:

1.19

0.81 0.65

0.91

1.23

linear

tanhtanh

−0.1

2.24

−0.77

−0.35
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Gradient Descent: An Example (5)

We forward again the same example and compute its (smaller)

MSE:

1.19

0.81 0.65

0.91

1.23

linear

tanhtanh

0.8 −0.8

0.92 1.45

0.73 0.89

−0.01
0.24

0.24

2.24

−0.77

targetMSE =0.27
−0.5 

−0.35
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ANN for Binary Classification

• One output with target coded as {−1, 1} or {0, 1} depending

on the last layer output function (linear, sigmoid, tanh, ...)

• For a given output, the associated class corresponds to the

nearest target.

• How to obtain class posterior probabilities:

◦ use a sigmoid with targets {0, 1}
◦ the output will encode P (Y = 1|X = x)

• Note: we do not optimize directly the classification error...
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ANN for Multiclass Classification

• Simplest solution: one-hot encoding

◦ One output per class, coded for instance as (0, · · · , 1, · · · , 0)

◦ For a given output, the associated class corresponds to the

index of the maximum value in the output vector

◦ How to obtain class posterior probabilities:

◦ use a softmax: ŷi =
exp(si)

∑

j

exp(sj)

◦ each output i will encode P (Y = i|X = x)

• Otherwise: each class corresponds to a different binary code

◦ For example for a 4-class problem, we could have an 8-dim

code for each class

◦ For a given output, the associated class corresponds to the

nearest code (according to a given distance)

◦ Example: Error Correcting Output Codes (ECOC)
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Error Correcting Output Codes

• Let us represent a 4-class problem with 6 bits:

class 1: 1 1 0 0 0 1

class 2: 1 0 0 0 1 0

class 3: 0 1 0 1 0 0

class 4: 0 0 1 0 0 0

• We then create 6 classifiers (or 1 classifier with 6 outputs)

• For example: the first classifier will try to separate classes 1

and 2 from classes 3 and 4

• When a new example comes, we compute the distance between

the code obtained by the 6 classifiers and the 4 classes:

obtained: 0 1 1 1 1 0

distances: (let us use Manhatan distance)
to class 1: 5

to class 2: 4

to class 3: 2

to class 4: 3
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Tricks of the Trade

• A good book to make ANNs working:

G. B. Orr and K. Müller. Neural Networks: Tricks of the

Trade. 1998. Springer.

• Stochastic Gradient

• Initialization

• Learning Rate and Learning Rate Decay

• Weight Decay
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Stochastic Gradient Descent

• The gradient descent technique is batch:

◦ First accumulate the gradient from all examples, then

adjust the parameters

◦ What if the data set is very big, and contains redundencies?

• Other solution: stochastic gradient descent

◦ Adjust the parameters after each example instead

◦ Stochastic: we approximate the full gradient with its

estimate at each example

◦ Nevertheless, convergence proofs exist for such method.

◦ Moreover: much faster for large data sets!!!

• Other gradient techniques: second order methods such as

conjugate gradient: good for small data sets
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Initialization

• How should we initialize the parameters of an ANN?

• One common problem: saturation

When the weighted sum is big, the output of the tanh

(or sigmoid) saturates, and the gradient tends towards 0

derivative is almost zero

derivative is good

weighted sum
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Initialization

• Hence, we should initialize the parameters such that the

average weighted sum is in the linear part of the transfer

function:

◦ See Leon Bottou’s thesis for details

◦ input data: normalized with zero mean and unit variance,

◦ targets:

◦ regression: normalized with zero mean and unit variance,

◦ classification:

◦ output transfer function is tanh: 0.6 and -0.6

◦ output transfer function is sigmoid: 0.8 and 0.2

◦ output transfer function is linear: 0.6 and -0.6

◦ parameters: uniformly distributed in

[

−1√
fan in

, 1√
fan in

]
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Learning Rate and Learning Rate Decay

• How to select the learning rate η ?

• If η is too big: the optimization diverges

• If η is too small: the optimization is very slow and may be

stuck into local minima

• One solution: progressive decay

◦ initial learning rate η = η0

◦ learning rate decay ηd

◦ At each iteration s:

η(s) =
η0

(1 + s · ηd)
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Learning Rate Decay (Graphical View)
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Weight Decay

• One way to control the capacity: regularization

• For MLPs, when the weights tend to 0, sigmoid or tanh

functions are almost linear, hence with low capacity

• Weight decay: penalize solutions with high weights and bias

(in amplitude)

C(Dn, θ) =
n

∑

p=1

L(y(p), ŷ(p)) +
β

2

|θ|
∑

j=1

θ2
j

where β controls the weight decay.

• Easy to implement:

θs+1
j = θs

j −
n

∑

p=1

η
∂L(y(p), ŷ(p))

∂θs
j

− η · β · θs
j
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Radial Basis Function (RBF) Models

• Normal MLP but the hidden layer l is encoded as follows:

◦ sl
i = −1

2

∑

j

(γl
i,j)

2 · (yl−1
j − µl

i,j)
2

◦ yl
i = exp(sl

i)

• The parameters of such layer l are θl = {γl
i,j , µ

l
i,j : ∀i, j}

• These layers are useful to extract local features (whereas tanh

layers extract global features)

• Initialization: use K-Means for instance
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Difference Between RBFs and MLPs

RBFs MLPs
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Recurrent Neural Networks

• Such models admit layers l with integration functions

sl
i = f(yl+k

j ) where k ≥ 0, hence loops, or recurrences

• Such layers l encode the notion of a temporal state

• Useful to search for relations in temporal data

• Do not need to specify the exact delay in the relation

• In order to compute the gradient, one must enfold in time all

the relations between the data:

sl
i(t) = f(yl+k

j (t − 1)) where k ≥ 0

• Hence, need to exhibit the whole time-dependent graph

between input sequence and output sequence

• Caveat: it can be shown that the gradient vanishes

exponentially fast through time
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Recurrent NNs (Graphical View)

y(t)

x(t)

y(t)

x(t)

y(t−2) y(t−1) y(t+1)

x(t−2) x(t−1) x(t+1)
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Auto Associative Networks

• Apparent objective: learn to reconstruct the input

• In such models, the target vector is the same as the input

vector!

• Real objective: learn an internal representation of the data

• If there is one hidden layer of linear units, then after learning,

the model implements a principal component analysis with the

first N principal components (N is the number of hidden

units).

• If there are non-linearities and more hidden layers, then the

system implements a kind of non-linear principal component

analysis.
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Auto Associative Nets (Graphical View)

inputs

targets = inputs

internal space
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Mixture of Experts

• Let fi(x; θfi
) be a differentiable parametric function

• Let there be N such functions fi.

• Let g(x; θg) be a gater: a differentiable function with N

positive outputs such that

N
∑

i=1

g(x; θg)[i] = 1

• Then a mixture of experts is a function h(x; θ):

h(x; θ) =
N

∑

i=1

g(x; θg)[i] · fi(x; θfi
)
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Mixture of Experts - (Graphical View)

Expert 1

Expert N

Expert 2

.

.

.
Σ

Gater
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Mixture of Experts - Training

• We can compute the gradient with respect to every parameters:

◦ parameters in the expert fi:

∂h(x; θ)

∂θfi

=
∂h(x; θ)

∂fi(x; θfi
)
· ∂fi(x; θfi

)

∂θfi

= g(x; θg)[i] ·
∂fi(x; θfi

)

∂θfi

◦ parameters in the gater g:

∂h(x; θ)

∂θg

=
N

∑

i=1

∂h(x; θ)

∂g(x; θg)[i]
· ∂g(x; θg)[i]

∂θg

=
N

∑

i=1

fi(x; θfi
) · ∂g(x; θg)[i]

∂θg
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Mixture of Experts - Discussion

• The gater implements a soft partition of the input space

(to be compared with, say, K-Means → hard partition)

• Useful when there might be regimes in the data

• Extension: hierarchical mixture of experts, when the experts

are themselves represented as mixtures of experts!

• Special case: when the experts can be trained by EM, the

mixture and the hierachical mixture can also be trained by EM.
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