Statistical Machine Learning from Data Statistical Learning Theory

Samy Bengio

IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland bengio@idiap.ch
http://www.idiap.ch/~bengio

February 9, 2006

- 1 Data, Functions, Risk
- 2 The Capacity
- Methodology

he Data he Function Space he Risk mpirical Risk Minimization

- 1 Data, Functions, Risk
- 2 The Capacity
- Methodology

The Data

Available training data

- Let Z_1, Z_2, \dots, Z_n be an *n*-tuple random sample of an unknown distribution of density p(z).
- All Z_i are independently and identically distributed (iid).
- Let D_n be a particular instance = $\{z_1, z_2, \dots, z_n\}$.

Various forms of the data

- Classification: $Z = (X, Y) \in \mathbb{R}^d \times \{-1, 1\}$ objective: given a new x, estimate P(Y|X = x)
- Regression: $Z = (X, Y) \in \mathbb{R}^d \times \mathbb{R}$ objective: given a new x, estimate E[Y|X=x]
- Density estimation: $Z \in \mathbb{R}^d$ objective: given a new z, estimate p(z)

The Function Space

Learning: search for a good function in a function space ${\mathcal F}$

Examples of functions $f(\cdot; \theta) \in \mathcal{F}$:

• Regression:

$$\hat{y} = f(x; a, b) = a \cdot x + b$$

Classification:

$$\hat{y} = f(x; a, b) = sign(a \cdot x + b)$$

Density estimation

$$\hat{p}(z) = f(z; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{|z|}{2}} \sqrt{|\Sigma|}} \exp\left(-\frac{1}{2}(z-\mu)^T \Sigma^{-1}(z-\mu)\right)$$

The Loss Function

Learning: search for a good function in a function space ${\mathcal F}$

Examples of loss functions $L: \mathcal{Z} \times \mathcal{F}$

• Regression:

$$L(z, f) = L((x, y), f) = (f(x) - y)^{2}$$

Classification:

$$L(z, f) = L((x, y), f) = \begin{cases} 0 & \text{if } f(x) = y \\ 1 & \text{otherwise} \end{cases}$$

• Density estimation:

$$L(z, f) = -\log p(z)$$

The Risk and the Empirical Risk

Learning: search for a good function in a function space ${\mathcal F}$

• Minimize the Expected Risk on \mathcal{F} , defined for a given f as

$$R(f) = E_Z[L(z, f)] = \int_Z L(z, f) p(z) dz$$

- Induction Principle:
 - select $f^* = \arg\min_{f \in \mathcal{F}} R(f)$
 - problems: p(z) is unknown, and we don't have access to all L(z, f)!!!
- Empirical Risk:

$$\hat{R}(f,D_n) = \frac{1}{n} \sum_{i=1}^n L(z_i,f)$$

$$E\left[\hat{R}(f,D)\right] = E\left[\frac{1}{n}\sum_{i=1}^{n}L(f,Z_{i})\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left[L(f,Z_{i})\right], \quad Z_{i}s \text{ are independent}$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left[L(f,Z)\right], \quad Z_{i}s \text{ are identically distributed}$$

$$= \frac{1}{n}nE\left[L(f,Z)\right]$$

$$= R(f)$$

$$E\left[\hat{R}(f,D)\right] = E\left[\frac{1}{n}\sum_{i=1}^{n}L(f,Z_{i})\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left[L(f,Z_{i})\right], \quad Z_{i}s \text{ are independent}$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left[L(f,Z)\right], \quad Z_{i}s \text{ are identically distributed}$$

$$= \frac{1}{n}nE\left[L(f,Z)\right]$$

$$= R(f)$$

$$E\left[\hat{R}(f,D)\right] = E\left[\frac{1}{n}\sum_{i=1}^{n}L(f,Z_{i})\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left[L(f,Z_{i})\right], \quad Z_{i}s \text{ are independent}$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left[L(f,Z)\right], \quad Z_{i}s \text{ are identically distributed}$$

$$= \frac{1}{n}nE\left[L(f,Z)\right]$$

$$= R(f)$$

$$E\left[\hat{R}(f,D)\right] = E\left[\frac{1}{n}\sum_{i=1}^{n}L(f,Z_{i})\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left[L(f,Z_{i})\right], \quad Z_{i}s \text{ are independent}$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left[L(f,Z)\right], \quad Z_{i}s \text{ are identically distributed}$$

$$= \frac{1}{n}nE\left[L(f,Z)\right]$$

$$= R(f)$$

$$E\left[\hat{R}(f,D)\right] = E\left[\frac{1}{n}\sum_{i=1}^{n}L(f,Z_{i})\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left[L(f,Z_{i})\right], \quad Z_{i}s \text{ are independent}$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left[L(f,Z)\right], \quad Z_{i}s \text{ are identically distributed}$$

$$= \frac{1}{n}nE\left[L(f,Z)\right]$$

$$= R(f)$$

$$E\left[\hat{R}(f,D)\right] = E\left[\frac{1}{n}\sum_{i=1}^{n}L(f,Z_{i})\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left[L(f,Z_{i})\right], \quad Z_{i}s \text{ are independent}$$

$$= \frac{1}{n}\sum_{i=1}^{n}E\left[L(f,Z)\right], \quad Z_{i}s \text{ are identically distributed}$$

$$= \frac{1}{n}nE\left[L(f,Z)\right]$$

$$= R(f)$$

Empirical Risk Minimization

The principle of empirical risk minimization (ERM):

$$f^{\star}(D_n) = \arg\min_{f \in \mathcal{F}} \hat{R}(f, D_n)$$

Consistency of the principle of ERM

- Let $f^* = \arg\min_{f \in \mathcal{F}} R(f)$ and $f^*(D_n) = \arg\min_{f \in \mathcal{F}} \hat{R}(f, D_n)$
- \bullet We say that the principle of ERM is consistent for ${\mathcal F}$ if

$$R(f^*(D_n)) \xrightarrow{P} R(f^*)$$

and
$$\hat{R}(f^{\star}(D_n), D_n) \xrightarrow{P} R(f^{\star})$$

Consistency of the ERM

The Risk and the Training Error

Training error:

$$\hat{R}(f^*(D_n), D_n) = \min_{f \in \mathcal{F}} \hat{R}(f, D_n)$$

• Is the training error a biased estimate of the risk? YES.

$$E[R(f^{\star}(D_n)) - \hat{R}(f^{\star}(D_n), D_n)] \ge 0$$

• The solution $f^*(D_n)$ found by minimizing the training error is better on D_n than on any other set D'_n drawn from p(z).

Bounding the Risk

Can we bound the difference between the training error and the generalization error?

$$|R(f^{\star}(D_n)) - \hat{R}(f^{\star}(D_n), D_n)| \leq ?$$

- Answer: under certain conditions on \mathcal{F} , yes.
- These conditions depend on the notion of capacity h of \mathcal{F} .

- Data, Functions, Risk
- 2 The Capacity
- Methodology

The Capacity

- The capacity $h(\mathcal{F})$ is a measure of its size, or complexity.
- Classification:

The capacity $h(\mathcal{F})$ is the largest n such that there exist a set of examples D_n such that one can always find an $f \in \mathcal{F}$ which gives the correct answer for all examples in D_n , for any possible labeling.

- Example: for the set of linear functions $(y = w \cdot x + b)$ in d dimensions, the capacity is d + 1.
- Regression and density estimation: capacity exists also, but more complex to derive (for instance, we can always reduce a regression problem to a classification problem).

Bounding the Risk

Bound on the expected risk:

- let $\tau = \sup L \inf L$.
- \bullet $\forall \eta$ we have

$$P\left(\sup_{f\in\mathcal{F}}|R(f)-\hat{R}(f,D_n)|\leq 2\tau\,\sqrt{\frac{h\left(\ln\frac{2n}{h}+1\right)-\ln\frac{\eta}{9}}{n}}\right)\geq 1-\eta$$

• with h the capacity of \mathcal{F} and n the number of training examples in D_n

Structural Risk Minimization - Fixed n

Consistency - Fixed h

The Bias-Variance Dilemma

The generalization error can be decomposed into 3 parts:

- ullet the bias: due to the fact that the set of functions ${\mathcal F}$ does not contain the optimal solution,
- the variance: due to the fact that if we had been using another set D'_n drawn from the same distribution p(Z), we would have obtained a different solution,
- the noise: even the optimal solution could be wrong! (for instance if for a given x there are more than one possible y)

The Bias-Variance Dilemma (Graphical View)

The Bias-Variance Dilemma (Graphical View)

Intrinsic dilemma: when the capacity $h(\mathcal{F})$ grows, the bias goes down, but the variance goes up!

Regularization

- We have seen that learning = searching in a set of functions
- This set should not be too small (underfitting)
- This set should not be too large (overfitting)
- One solution: regularization
- Penalize functions f according to a prior knowledge
- For instance, penalize functions that have large parameters

$$f^*(D_n) = \arg\min_{f \in \mathcal{F}} \hat{R}(f, D_n) + H(f)$$

with H(f) a function that penalizes according to your prior

For example, in some models:
 small parameters → simpler solutions → less capacity

Early Stopping

- Another method for regularization: early stopping.
- Works when training is an iterative process.
- Instead of selecting the function that minimizes the empirical risk on D_n , we can do:
 - divide your training set D_n into two parts
 - train set $D^{tr} = \{z_1, z_2, \cdots, z_{tr}\}$
 - validation set $D^{va} = \{z_{va+1}, z_{tr+2}, \cdots, z_{tr+va}\}$
 - tr + va = n
 - let $f^{t}(D^{tr})$ be the current function found at iteration t
 - let $\hat{R}(f^t(D^{tr}), D^{va}) = \frac{1}{va} \sum_{z_i \in D^{va}} L(z_i, f^t(D^{tr}))$
 - stop training at iteration t* such that

$$t^* = \arg\min_t \hat{R}(f^t(D^{tr}), D^{va})$$

and return function $f(D_n) = f^{t^*}(D^{tr})$

Model Selection Estimation of the Risk Model Selection and Estimation of the Risl The Machine Learning Magic

- 1 Data, Functions, Risk
- 2 The Capacity
- Methodology

Methodology

- First: identify the goal! It could be
 - to give the best model you can obtain given a training set?
 - 2 to give the expected performance of a model obtained by empirical risk minimization given a training set?
 - 3 to give the best model and its expected performance that you can obtain given a training set?
- If the goal is (1): use need to do model selection
- If the goal is (2), you need to estimate the risk
- If the goal is (3): use need to do both!
- There are various methods that can be used for either risk estimation or model selection:
 - simple validation
 - cross validation (k-fold, leave-one-out)

Model Selection - Validation

- ullet Select a family of functions with hyper-parameter heta
- Divide your training set D_n into two parts

•
$$D^{tr} = \{z_1, z_2, \cdots, z_{tr}\}$$

•
$$D^{va} = \{z_{tr+1}, z_{tr+2}, \cdots, z_{tr+va}\}$$

•
$$tr + va = n$$

• For each value θ_m of the hyper-parameter θ

• select
$$f_{\theta_m}^{\star}(D^{tr}) = \arg\min_{f \in \mathcal{F}_{\theta_m}} \hat{R}(f, D^{tr})$$

• estimate
$$R(f_{\theta_m}^{\star})$$
 with $\hat{R}(f_{\theta_m}^{\star}, D^{va}) = \frac{1}{va} \sum_{z_i \in D^{va}} L(z_i, f_{\theta_m}^{\star}(D^{tr}))$

$$\bullet \ \operatorname{select} \ \theta_m^\star = \arg \min_{\theta_m} R(f_{\theta_m}^\star)$$

• return
$$f^*(D_n) = \arg\min_{f \in \mathcal{F}_{\theta_m^*}} \hat{R}(f, D_n)$$

Model Selection - Cross-validation

- ullet Select a family of functions with hyper-parameter heta
- Divide your training set D_n into K distinct and equal parts $D^1, \dots, D^k, \dots, D^K$
- For each value θ_m of the hyper-parameter θ
 - For each part D^k (and its counterpart \bar{D}^k)

• select
$$f_{\theta_m}^{\star}(\bar{D}^k) = \arg\min_{f \in \mathcal{F}_{\theta_m}} \hat{R}(f, \bar{D}^k)$$

• estimate $R(f_{\theta_m}^{\star}(\bar{D}^k))$ with

$$\hat{R}(f_{\theta_m}^{\star}(\bar{D}^k), D^k) = \frac{1}{|D^k|} \sum_{z_i \in D^k} L(z_i, f_{\theta_m}^{\star}(\bar{D}^k))$$

- estimate $R(f_{\theta_m}^{\star}(D_n))$ with $\frac{1}{K} \sum_{k} R(f_{\theta_m}^{\star}(\bar{D}^k))$
- select $\theta_m^{\star} = \arg\min_{\theta_m} R(f_{\theta_m}^{\star}(D))$
- return $f^*(D_n) = \arg\min_{f \in \mathcal{F}_{\theta_m^*}} \hat{R}(f, D_n)$

Estimation of the Risk - Validation

- Divide your training set D_n into two parts
 - $D^{tr} = \{z_1, z_2, \cdots, z_{tr}\}$
 - $D^{te} = \{z_{tr+1}, z_{tr+2}, \cdots, z_{tr+te}\}$
 - tr + te = n
- select $f^*(D^{tr}) = \arg\min_{f \in \mathcal{F}} \hat{R}(f, D^{tr})$

(this optimization process could include model selection)

• estimate
$$R(f^*(D^{tr}))$$
 with $\hat{R}(f^*(D^{tr}), D^{te}) = \frac{1}{te} \sum_{z_i \in D^{te}} L(z_i, f^*(D^{tr}))$

Estimation of the Risk - Cross-validation

- Divide your training set D_n into K distinct and equal parts $D^1, \dots, D^k, \dots, D^K$
- For each part D^k
 - let \bar{D}^k be the set of examples that are in D_n but not in D^k
 - select $f^*(\bar{D}^k) = \arg\min_{f \in \mathcal{F}} \hat{R}(f, \bar{D}^k)$

(this process could include model selection)

- estimate $R(f^*(\bar{D}^k))$ with $\hat{R}(f^*(\bar{D}^k), D^k) = \frac{1}{|D^k|} \sum_{z_i \in D^k} L(z_i, f^*(\bar{D}^k))$
- estimate $R(f^*(D_n))$ with $\frac{1}{K} \sum_k R(f^*(\bar{D}^k))$
- When k = n: leave-one-out cross-validation

Estimation of the Risk and Model Selection

- When you want both the best model and its expected risk.
- You then need to merge the methods already presented.
 For instance:
 - train-validation-test: 3 separate data sets are necessary
 - cross-validation + test: cross-validate on train set, then test on separate set
 - ullet double-cross-validation: for each subset, need to do a second cross-validation with the K-1 other subsets
- Other important methodological aspects:
 - compare your results with other methods!!!!
 - use statistical tests to verify significance
 - verify your model on more than one datasets

Train - Validation - Test

- ullet Select a family of functions with hyper-parameter heta
- Divide your training set D_n into three parts D^{tr} , D^{va} , and D^{te}
- For each value θ_m of the hyper-parameter θ

• select
$$f_{\theta_m}^{\star}(D^{tr}) = \arg\min_{f \in \mathcal{F}_{\theta_m}} \hat{R}(f, D^{tr})$$

$$\bullet \text{ let } \hat{R}(f^{\star}_{\theta_m}(D^{tr}), D^{va}) = \frac{1}{va} \sum_{z_i \in D^{va}} L(z_i, f^{\star}_{\theta_m}(D^{tr}))$$

• select
$$\theta_m^{\star} = \arg\min_{\theta_m} \hat{R}(f_{\theta_m}^{\star}(D^{tr}), D^{va})$$

• select
$$f^*(D^{tr} \cup D^{va}) = \arg\min_{f \in \mathcal{F}_{\theta_m^*}} \hat{R}(f, D^{tr} \cup D^{va})$$

• estimate
$$R(f^*(D^{tr} \cup D^{va}))$$
 with $\frac{1}{te} \sum_{z_i \in D^{te}} L(z_i, f^*(D^{tr} \cup D^{va}))$

Cross-validation + Test

- ullet Select a family of functions with hyper-parameter heta
- Divide you dataset D_n into two parts: a training set D^{tr} and a test set D^{te}
- For each value θ_m of the hyper-parameter θ estimate $R(f_{\theta_m}^{\star}(D^{tr}))$ with D^{tr} using cross-validation
- select $\theta_m^{\star} = \arg\min_{\theta_m} R(f_{\theta_m}^{\star}(D^{tr}))$
- retrain $f^*(D^{tr}) = \arg\min_{f \in \mathcal{F}_{\theta_m^*}} \hat{R}(f, D^{tr})$
- estimate $R(f^*(D^{tr}))$ with $\frac{1}{te} \sum_{z_i \in D^{te}} L(z_i, f^*(D^{tr}))$

Double Cross-validation

- ullet Select a family of functions with hyper-parameter heta
- Divide your training set D_n into K distinct and equal parts $D^1, \dots, D^k, \dots, D^K$
- For each part D^k
 - select the best model $f^*(\bar{D}^k)$ by cross-validation on \bar{D}^k
 - estimate $R(f^*(\bar{D}^k))$ with

$$\widehat{R}(f^{\star}(\bar{D}^k), D^k) = \frac{1}{|D^k|} \sum_{z_i \in D^k} L(z_i, f^{\star}(\bar{D}^k))$$

- estimate $R(f^*(D))$ with $\frac{1}{K} \sum_k R(f^*(\bar{D}^k))$
- Note: this process only gives you an estimate of the risk, but not a model. If you need the model as well, you have to perform a separate model selection process!

Model Selection Estimation of the Risk Model Selection and Estimation of the Risk The Machine Learning Magic

Double Cross-validation

Beware of the Machine Learning Magic

Beware of the Machine Learning Magic (con't)

