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Setup

Training set:

(xi , yi )i=1...n ∈ Rd × {−1, 1}

We would like to find an hyperplane

wx + b = 0 (w ∈ Rd , b ∈ R)

which separates the two classes.
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The Margin

Let d+ be the shortest distance from the hyperplane to the
closest positive example.

Let d− be the shortest distance from the hyperplane to the
closest negative example.

Define the margin of the hyperplane to be d+ + d−.

The simplest SVM looks for the separating hyperplane with
the largest margin.
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SVMs and the Margin (Graphical View)
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wx + b = 0

wx + b = 1

wx + b = −1
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Why is it Good to Maximize the Margin?

There are several justifications to favor large margins... for
instance:

If training and test data come from the same distribution and
all test data are within some ∆ distance from the training
points...

Then a margin (2 ·∆) is enough to classify all points:
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Why is it Good to Maximize the Margin?

If all points lie at a distance of at least ∆ from the separator,
and all points are in a bounded sphere, then a small
perturbation of the definition of the separator will not hurt.
Hence one can use less bits to encode the separating
hyperplane.
This is related to the Minimum Description Length principle:

The best description of the data, in terms of
generalization error, should be the one that requires
the fewest bits to store.
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Formulation of the SVM Problem

We can define the following constraints:

wxi + b ≥ +1 for yi = +1

wxi + b ≤ −1 for yi = −1

They can be combined as follows:

yi (wxi + b)− 1 ≥ 0 ∀i
One can show that d+ = d− = 1

‖w‖ with ‖w‖ the Euclidean

norm of w . Hence, the margin is simply 2
‖w‖ .

So we would like to minimize:

‖w‖2

2
Under the constraints:

yi (wxi + b)− 1 ≥ 0 ∀i
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A Constrained Optimization Problem

Normal way to solve an optimization problem with cost C (w)
and parameter w : set ∂C

∂w = 0. Example:

minimize C (w) =
w2

2
− 3w

hence
∂C

∂w
= w − 3 = 0 =⇒ w = 3

When there are constraints ci ≥ 0, use Lagrange multipliers
and verify the solution with the Karush-Kuhn-Tucker (KKT)
conditions.
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A Constrained Optimization Problem (con’t)

Form the Lagrangian by subtracting one term for each
constraint ci ≥ 0, weighted by a positive Lagrange multiplier:

L(w , α) = C (w)−
∑

i

αici

We must now minimize L with respect to w subject to
∂L
∂αi

= 0
αi ≥ 0 ∀i

We can equivalently solve the dual problem: maximize L with
respect to α subject to

∂L
∂w = 0
αi ≥ 0 ∀i

The general problem is to find a saddle point:

max
α

min
w

L(w , α)

Samy Bengio Statistical Machine Learning from Data 11



Linear Support Vector Machines
Kernels for Non-Linear Support Vector Machines

Training Support Vector Machines
Other Kernel Methods

The Separable Case
The Non-Separable Case
Terminology

Lagrangian Formulation for SVMs

We introduce a Lagrange multiplier αi , i = 1, . . . , n, one for
each inequality constraint:

L(w , b, α) =
‖w‖2

2
−

n∑
i=1

αi (yi (wxi + b)− 1)

L has to be minimized w.r.t. the primal variables w and b and
maximized w.r.t. the dual variables αi .

At the extremum, we have

∂L

∂w
= 0 and

∂L

∂b
= 0
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Solve the Lagrangian

We have:

L =
‖w‖2

2
−

n∑
i=1

αi (yi (wxi + b)− 1)

We want ∂L
∂w = 0:

∂L

w
= w −

n∑
i=1

αiyixi = 0

w =
n∑

i=1

αiyixi

We want ∂L
∂b = 0:

∂L

b
=

n∑
i=1

αiyi = 0
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Substituting to get the Dual

L =
‖w‖2

2
−

n∑
i=1

αi (yi (wxi + b)− 1)

=

∑n
i=1,j=1 αiαjyiyjxixj

2
−

n∑
i=1

αi

yi

 n∑
j=1

αjyjxjxi + b

− 1


=

1

2

n∑
i ,j=1

αiαjyiyjxixj −
n∑

i ,j=1

αiαjyiyjxjxi − b
n∑

i=1

αiyi +
n∑

i=1

αi

= −1

2

n∑
i ,j=1

αiαjyiyjxixj +
n∑

i=1

αi

L =
n∑

i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyjxixj
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The Dual Formulation

We need to maximize the following:

L =
n∑

i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyjxixj

subject to
αi ≥ 0, ∀i
n∑

i=1

αiyi = 0

This can be solved using classical quadratic programming
optimization packages, based for instance on constrained
gradient descent.
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The KKT Conditions

The following KKT conditions are satisfied at the solution.

∂L

∂w
= w −

n∑
i=1

αiyixi = 0

∂L

∂b
=

n∑
i=1

αiyi = 0

yi (wxi + b)− 1 ≥ 0, ∀i
αi ≥ 0, ∀i
αi (yi (wxi + b)− 1) = 0, ∀i

This can be used to estimate b after w has been found during
training.
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A Bug

This minimization problem does not have any solution if the two
classes are not separable.
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Fixing The Bug: “Soft” Margin

Relax the constraints: use a soft margin instead of a hard
margin.

We would like to minimize:

‖w‖2

2
+ C

n∑
i=1

ξi

Under the constraints:

yi (wxi + b) ≥ 1 − ξi ∀i

ξi ≥ 0 ∀i
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The Non-Separable Dual Formulation

We need to maximize the following:

L =
n∑

i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyjxixj

subject to
0 ≤ αi ≤ C , ∀i , . . . , n

n∑
i=1

αiyi = 0

We then obtain w and b as follows:

w =
∑

i

αiyi xi

αi [1− ξi − yi (wxi + b)] = 0
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Support Vector Terminology

Note that the decision function can be rewritten as:

ŷ = sign

(∑
i

αiyi xix + b

)
Training examples xi with αi 6= 0 are support vectors.
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αi = 0

0 ≤ αi ≤ C
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Non-Linear SVMs

Project the data into a higher dimensional space: it should be
easier to separate the two classes.

Given a function φ : Rd → F , work with φ(xi ) instead of
working with xi .
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The Kernel Trick

Note that we have only dot products φ(xi )φ(xj) to compute.

Unfortunately, this could be very expensive in a high
dimensional space.

Use instead a kernel: a function k(x , z) which represents a
dot product in a “hidden” feature space.

k(x , z) = φ(x)φ(z)

Example: instead of

φ(x) =

 x2
1√

2x1x2

x2
2


use

k(x , z) = (xz)2
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Common Kernels

Polynomial:

k(x , z) = (u xz + v)p (u ∈ R, v ∈ R, p ∈ N∗
+)

Gaussian:

k(x , z) = exp

(
−‖x − z‖2

2σ2

)
(σ ∈ R∗

+)

The function

k(x , z) = tanh(u xz + v)

is not a kernel!
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Mercer’s Condition

Which functions are kernels???

There exists a mapping φ and an expansion

k(x , z) =
∑

i

φ(x)iφ(z)i

if and only if, for any g(x) such that∫
g(x)2dx is finite

then ∫
k(x , z)g(x)g(z)dxdz ≥ 0

In practice, a kernel gives rise to a positive semi-definite
matrix (example a symmetric similarity matrix).
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Final Solution

Maximize
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi , xj)

under the constraints

0 ≤ αi ≤ C and
∑

i

αiyi = 0

For 0 < αi < C , compute b using

1− yi

∑
j

αjyj k(xj , xi ) + b

 = 0

Decision function: ŷ = sign

(∑
i

αiyi k(xi , x) + b

)
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The KKT Conditions

The following KKT conditions are satisfied at the solution.

yi (wxi + b)− 1 ≥ 0, ∀i
0 < αi < C , ∀i s.t. yi (wxi + b) = 1

αi = C , ∀i s.t. yi (wxi + b) ≤ 1

And note that αi = 0 for all non-support vectors.
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Facts to Remember

SVMs maximize the margin (in the feature space)

Use the soft margin trick

Project the data into a higher dimensional space for non-linear
relations

Kernels simplify the computation

A Lagrangian method leads to a “nice” quadratic
optimization problem under constraints.
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SVMs in Practice

In order to tune the capacity, the kernel is the most important
parameter to choose.

Polynomial kernel: increasing the degree will increase the
capacity.
Gaussian kernel: increasing σ will decrease the capacity.

Tune C , the trade-off between the margin and the errors.

For non-noisy data sets, C usually has not much influence.
Carefully choose C for noisy data sets: small values usually
give better results.
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Complexity of the QP Problem

You need n2 in memory just to keep the kernel matrix!

Naive optimization technique would then be at least n3 to n4.

What about datasets of 100000 examples or more???

Various approaches have been proposed:

Chunking: at each step, solve the QP problem with all
non-zero αi from previous step, and the M worst examples
violating the KKT conditions.
Decomposition: Solve a series of smaller QP problems, where
each one adds an example that violates the KKT conditions.
Sequential Minimal Optimization (SMO): solve the smallest
optimization problem at each iteration.
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SMO Framework

At every step, choose two Lagrange multipliers αi to
jointly optimize, with at least one violating the KKT conditions.

there are several tricks to select the most violating
ones...

Find the optimal value for these two αi and update the SVM
model.

y1 = y2 → α1 + α2 = k

α2 = C

α2 = 0

α1 = 0 α1 = 0 α1 = C

y1 6= y2 → α1 − α2 = k

α2 = C

α2 = 0

α1 = C

This procedure converges to the optimum.
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Other Kernel Methods

A Zoo of Kernel Methods in the Literature:

Control explicitely the number of SVs: ν-SVMs

For regression problems: Support Vector Regression

For density estimation or representation: Kernel PCA

For generative models: Fisher kernel

For discrete sequences: String kernel

...

How to design a kernel? Prior knowledge!!!

choosing a similarity measure between 2 examples in the data

choosing a linear representation of the data

choosing a feature space for learning

Samy Bengio Statistical Machine Learning from Data 34


	Linear Support Vector Machines
	The Separable Case
	The Non-Separable Case
	Terminology

	Kernels for Non-Linear Support Vector Machines
	Non-Linear SVMs
	Kernels
	Final Solution

	Training Support Vector Machines
	Complexity
	SMO

	Other Kernel Methods

