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STATISTICAL LEARNING FOR CLASSIFICATION

The usual setting for learning in a context of classification

à A training set

à A family of classifiers

à A test set

Choose a classifier according to its performances on the training set
to get good performances on the test set.
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TOPIC OF THIS TALK

The goal of this talk is to give an intuitive understanding of the
Probably Approximately Correct learning (PAC learning for short)
theory.

à Concentration inequalities

à Basic PAC results

à Relation with Occam’s principle

à Relation to Vapnik-Chervonenkis dimension
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NOTATION

X the space of the objects to classify (for instance images)

C the family of classifiers

S = ((X1, Y1), . . . , (X2N , Y2N )) a random variable on
(X × {0, 1})2N standing for the samples (both training and
testing)

F a random variable on C standing for the learned classifier
(which can be a deterministic function of S or not)
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REMARKS

à The set C contains all the classifiers obtainable with the learning
algorithm. For an ANN for instance, there is one element of C for
every single configuration of the synaptic weights.

à The variable S is not one sample, but a family of 2N samples
with their labels. It contains both the training and the test set.
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For every f ∈ C, we denote by ξ(f, S) the difference between the
training and the test errors of f estimated on S

ξ(f, S) =
1
N

N∑

i=1

1{f(XN+i) 6= YN+i}
︸ ︷︷ ︸

test error

− 1
N

N∑

i=1

1{f(Xi) 6= Yi}
︸ ︷︷ ︸

training error

Where 1{t} is equal to 1 if t is true, and 0 otherwise. Since S is
random, this is a random quantity.
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Given η, we want to bound the probability that the test error is less
than the training error plus η

P (ξ(F, S) ≤ η) ≥ ?

F is not constant and depends on the X1, . . . , X2N and the
Y1, . . . , YN .
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F

S

Gray squares correspond to the (S, F ) for which ξ(F, S) ≥ η.
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F

S

A training algorithm associates an F to every S, here shown with
dots. We want to bound the number of dots on gray cells.
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CONCENTRATION INEQUALITY

How we see that for any fixed f , the test and training er-

rors are likely to be similar . . .
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HŒFFDING’S INEQUALITY (1963)

Given a family of independent random variables Z1, . . . , ZN ,
bounded ∀i, Zi ∈ [ai, bi], if we let S denote

∑
i Zi, we have

P (S −E(S) ≥ t) ≤ exp
(
− 2t2∑

i(bi − ai)2

)
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Note that the 1{f(Xi) 6= Yi} are i.i.d Bernoulli, and we have

ξ(f, S) =
1
N

N∑

i=1

1{f(XN+i) 6= YN+i} − 1
N

N∑

i=1

1{f(Xi) 6= Yi}

=
1
N

N∑

i=1

1{f(XN+i) 6= YN+i} − 1{f(Xi) 6= Yi}︸ ︷︷ ︸
∆i

Thus ξ is the averaged sum of the ∆i, which are i.i.d random
variables on {−1, 0, 1} of zero mean.
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When f is fixed ξ(f, S) is with high probability around 0, and we
have (Hœffding)

η

∀f, ∀η, P (ξ(f, S) ≥ η) ≤ exp
(
−1

2
η2 N

)

Hence, we have an upper bound on the number of gray cells per row.
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UNION BOUND

How we see that the probability the chosen F fails is lower

than the probability that there exists a f that fails . . .
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We have

P (ξ(F, S) ≥ η) =
∑

f

P (F = f, ξ(F, S) ≥ η)

=
∑

f

P (F = f, ξ(f, S) ≥ η)

≤
∑

f

P (ξ(f, S) ≥ η)

≤ ||C|| exp
(
−1

2
η2 N

)
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F

S

We can see that graphically as a situation when the dots meet all the
gray squares.
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Since

P (ξ(F, S) ≥ η) ≤ ||C|| exp
(
−1

2
η2 N

)

we have

P


ξ(F, S) ≥

√
2

log ||C|| + log 1
ε?

N


 ≤ ε?

Thus, the margin between the training and test errors η which is
verified for a fixed probability ε? grows like the square root of the log
of the number of classifiers ||C||.
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PRIOR ON C

How we see weird results when we arbitrarily distribute

allowed errors on the fs before looking at the training

data . . .
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S

fη(  )

If the margin η depends on F , the proportion of gray squares is not
the same on every row.
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Let ε(f) denote the (bound on the) probability that the constraint is
not verified for f

P (ξ(F, S) ≥ η(F )) ≤ P (∃f ∈ C, ξ(f, S) ≥ η(f))

≤
∑

f

P (ξ(f, S) ≥ η(f))

≤
∑

f

ε(f)

and we have

∀f, η(f) =

√
2

log 1
ε(f)

N
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Let define ε? =
∑

f ε(f) and ρ(f) = ε(f)
ε? . The later is a distribution on

C.

Note that both can be fixed arbitrarily, and we have

∀f, η(f) =

√
2

log 1
ρ(f) + log 1

ε?

N
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We can see log 1
ρ(f) as the optimal description length of f . From that

point of view, η(f) is consistent with the principle of parsimony of
William Occam (1280 – 1349)

Entities should not be multiplied unnecessarily.

Picking a classifier with a long description leads to a bad control on
the test error.
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EXCHANGEABLE SELECTION

How we see that the family of classifiers can be a function

of both the training and the test Xs . . .
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VARIABLE FAMILY OF CLASSIFIERS

Consider a family of classifiers which are functions of the sample
{X1, . . . , X2N} in an exchangeable way. For instance with Xs in Rk,
one could rank the Xi according to the lexicographic order, and
make the f functions of the ordered Xs.

Under such a constraint, the ∆i remains i.i.d. with the same law, and
all our results hold.
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VAPNIK-CHERVONENKIS

How we realize that our classifier sets are not as rich as

we though . . .
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DEFINITION

The Vapnik-Chervonenkis dimension of C is the largest D so that
exists a family x1, . . . , xD ∈ XD which can be arbitrarily labeled with
a classifier from C.
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Consider for C the characteristic functions of rectangles. We can find
families of 1, 2, 3 or 4 points which can be labelled arbitrarily:
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However, given a family of 5 points, if the four external points are
labelled 1 and the center point labelled 0, than no function from C can
predict that labelling. Hence here D = 4.

28 / 33



The VC-dimension is mainly useful because we can compute from it
a bound on the number of possible labellings of a family of N points.

Let SC(N) be this bound. We have (Sauer’s lemma)

SC(N) ≤ (n + 1)D

This is far smaller than the number of arbitrary labelings 2N .
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We let Ẍ denote the non-ordered set {X1, . . . , X2N} and for α ⊂ X ,
let C|α denote a subset of C so that two elements of C|α are not equal
when restrained to α. We have:

P (ξ(F, S) ≥ η) =
∑
α

P (ξ(F, S) ≥ η |Ẍ = α)P (Ẍ = α)

=
∑
α

∑

f∈C|α
P (F|α = f|α, ξ(F, S) ≥ η |Ẍ = α)P (Ẍ = α)

≤
∑
α

∑

f∈C|α
P (ξ(f, S) ≥ η |Ẍ = α)P (Ẍ = α)

≤
∑
α

SC(2N) exp
(
−1

2
η2 N

)
P (Ẍ = α)

= SC(2N) exp
(
−1

2
η2 N

)
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S

F Same responses

Same X
..

We group the Ss and fs into blocks of constant Ẍ and fs. The
bound on the number of gray cells holds in a piece of line in such a
block, and we can bound the the number of such blocks for every
given S by SC(2N).
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S

F Same responses

Same X
..

The training algorithm meets as many gray cells as another one
which lives in the lowest rows of the blocks.
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