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STATISTICAL LEARNING FOR CLASSIFICATION
The usual setting for learning in a context of classification

w A training set
w A family of classifiers

A test set

Choose a classifier according to its performances on the training set
to get good performances on the test set.
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TOPIC OF THIS TALK

The goal of this talk is to give an intuitive understanding of the
Probably Approximately Correct learning (PAC learning for short)
theory.

w Concentration inequalities
m Basic PAC results
w Relation with Occam’s principle

w Relation to Vapnik-Chervonenkis dimension
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NOTATION

X the space of the objects to classify (for instance images)
C the family of classifiers

S =((X1, 1), ..., (Xan, Yon)) a random variable on
(X x {0,1})*" standing for the samples (both training and
testing)

F a random variable on C standing for the learned classifier
(which can be a deterministic function of S or not)
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REMARKS

w The set C contains all the classifiers obtainable with the learning
algorithm. For an ANN for instance, there is one element of C for
every single configuration of the synaptic weights.

w The variable S is not one sample, but a family of 2N samples
with their labels. It contains both the training and the test set.
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For every f € C, we denote by £(f, S) the difference between the
training and the test errors of f estimated on S

N

€ 8) = 3 SOMIKnwi) # Yawid — v 30 HI(XD) £ %)

1=1

\ 7 A\ 7

test error training error

Where 1{t} is equal to 1 if ¢ is true, and 0 otherwise. Since S is
random, this is a random quantity.
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Given n, we want to bound the probability that the test error is less
than the training error plus n

PEWF, S)<n) > ?

F'is not constant and depends on the X1, ..., X5n and the
Yi, ..., Yn.
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S
Gray squares correspond to the (5, F') for which £(F, S) > n.
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S

A training algorithm associates an F' to every S, here shown with
dots. We want to bound the number of dots on gray cells.
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CONCENTRATION INEQUALITY

How we see that for any fixed f, the test and training er-
rors are likely to be similar . ..
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HCEFFDING’S INEQUALITY (1963)

Given a family of independent random variables 71, ..., Zy,
bounded Vi, Z; € |a;, b;], if we let S denote ) . Z;, we have

P(S—E(S)>1) < exp (_Z-(zjt— CW)
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Note that the 1{f(X;) # Y;} are i.i.d Bernoulli, and we have

1 N

Hf(XNti) # YNgi} — N Z I f(X:) # Y3}
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1

Thus ¢ is the averaged sum of the A;, which are i.i.d random
variables on {—1, 0, 1} of zero mean.
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When f is fixed &£(f, S) is with high probability around 0, and we
have (Heeffding)

h

<>

n
Vi, Vn, P(E(f, S)=>n) < exp(—%n”\f)

Hence, we have an upper bound on the number of gray cells per row.
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UNION BOUND

How we see that the probability the chosen F’ fails is lower
than the probability that there exists a f that fails . ..
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We have

P(E(F,S)>n) = Y P(F=FfEFS) >n)
f

= Y P(F=fEf8)>n)
f

< Y PEf,S) =n)
7

1
el exp (57 )

I
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S

We can see that graphically as a situation when the dots meet all the
gray squares.
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Since
1
P(E(F, S)>n) < ||C|| exp (—5 "’ N)

we have

1 C | %
P<§(F, S)>\/2 g ||; oge) .

Thus, the margin between the training and test errors n which is
verified for a fixed probability e* grows like the square root of the log
of the number of classifiers ||C||.
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PRIOR ON C

How we see weird results when we arbitrarily distribute
allowed errors on the fs before looking at the training
data...
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n(f)

e T

S

If the margin n» depends on F', the proportion of gray squares is not
the same on every row.
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Let (f) denote the (bound on the) probability that the constraint is
not verified for f

P(E(F, S) = n(F)) P(3fedC &(f, S)=n(f))

> P((f. S) = n(f))
f

IA A

INA
(]
M
=

and we have
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Let define e* =} . e(f) and p(f) = eg)_ The later is a distribution on
C.

Note that both can be fixed arbitrarily, and we have

logi—l—logei*
Vo) = \/2 p(f)N
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We can see log ﬁ as the optimal description length of f. From that

point of view, n(f) is consistent with the principle of parsimony of
William Occam (1280 — 1349)

Entities should not be multiplied unnecessarily.

Picking a classifier with a long description leads to a bad control on
the test error.

22 /33



EXCHANGEABLE SELECTION

How we see that the family of classifiers can be a function
of both the training and the test Xs . ..
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VARIABLE FAMILY OF CLASSIFIERS

Consider a family of classifiers which are functions of the sample
{X1,...,Xon} in an exchangeable way. For instance with X's in R,
one could rank the X; according to the lexicographic order, and
make the f functions of the ordered Xs.

Under such a constraint, the A, remains i.i.d. with the same law, and
all our results hold.
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VAPNIK-CHERVONENKIS

How we realize that our classifier sets are not as rich as
we though ...
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DEFINITION

The Vapnik-Chervonenkis dimension of C is the largest D so that
exists a family z;,...,xp € XP which can be arbitrarily labeled with
a classifier from C.
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Consider for C the characteristic functions of rectangles. We can find

families of 1, 2, 3 or 4 points which can be labelled arbitrarily:

o [

[o]

[o]
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However, given a family of 5 points, if the four external points are
labelled 1 and the center point labelled 0, than no function from C can
predict that labelling. Hence here D = 4.
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The VC-dimension is mainly useful because we can compute from it
a bound on the number of possible labellings of a family of N points.

Let S¢ (V) be this bound. We have (Sauer’s lemma)

This is far smaller than the number of arbitrary labelings 2% .
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We let X denote the non-ordered set {X;,..., X,x} and fora C X,
let C,, denote a subset of C so that two elements of C|, are not equal
when restrained to . We have:

PE(F,8)>n) = Y PEF S)>n|X=a)P(X =a)

= % P(Fla = fla &(F, §) 2 9|X = a) P(X = o)

a  feCq
< > ) PES)=nX=a)P(X =a)
a  feCq

< ; Sc(2N) exp (—% n? N) P(X = a)

1
Sc(2N) exp (—5 n? N)
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Same X

$ Same responses

S

We group the Ss and fs into blocks of constant X and fs. The
bound on the number of gray cells holds in a piece of line in such a

block, and we can bound the the number of such blocks for every
given S by S¢(2N).
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Same X

$ Same responses

S

The training algorithm meets as many gray cells as another one
which lives in the lowest rows of the blocks.
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