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1. Download data.py and mlp.py. Choose a UCI database (eg pi-
diabetes), split it in train, validation and test sets and train
a Multi-Layers Perceptron, with and without normalizing the
data. Try also different cost functions.

2. Show that to maximize the likelihood under the hypothesis that
the observations y; (I € {1,...,L}) are generated from a smooth
function with added noise ¢ following a Gaussian distribution
N(O,1), i = fo(z) + &, is equivalent to minimize the em-
pirical risk with Mean Square Error function. (Hint: Consider
Py (yilz))-

The log-likelihood over the training set:

log £(6) = log(] | Po(wilr)) = log Py (uil1)-

=1 =1

Given the hypothesis on the generation of the observation y;, we have:

Pofunken) = —=exp(— = fo(an) ).

and thus:

3. Let f(z) = Hexp(,(zzﬂfﬁm%wg))—l and L(y, f(z)) = log(14+exp(—yf(x)),
with y € {—1,1}. Provide the gradient descent solution 86155 for
i=1{1,2,3}. '




The solution can be expressed in various ways. Here is a simple derivation

in the spirit of artificial neural networks. Let
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4. (a) Provide the gradient descent solution for an MLP f with 2

layers, and a cost function C(y, f(z)).
(b) Copying mlp.py implement an MLP with 2 layers.

(c) Compare on a 2-dimensions dataset, the decision functions
of an MLP with 1 layer and 2 layers. Take a look at the
decision functions.

The equation for an MLP f with 2 layers:

out = f(input) = v - 2o {ya [21 (y1(input))]} + ¢
where,

e nput € R™, out € R,
e yi(input) = wy -input + by = (3, w{linputl +b9)j=1..nhui s
o 21 = (h(yl),.... h(yy"")),

® yo(21) =wa-z1 + by = (Z?El wy 2]+ bb)im1..hus

o 22 = (h(y3),- -, h(y3""))",
e h is a transfer function (eg tanh),

e wy is the nhuy x n 1st layer weight matrix (nhui: number of hidden
units for the 1st layer),

e by is the nhuy 1st layer bias vector,

e woy is the nhug X nhu; 2nd layer weight matrix (nhug: number of
hidden units for the 2nd layer),

e by is a nhuo 2nd layer bias vector,

v is the 1 X nhus output layer weight matrix and

b is the output layer bias.

The gradients:
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