Lab 2 - Classical Models

{bengio,mkeller}@idiap.ch http://www.idiap.ch/~{bengio,mkeller}

November 25, 2005

1. Getting familiarized with python: function to process classification databases

Download:

- http://www.idiap.ch/ bengio/lectures/dbases/index.html a choice of databases.
- Choose a database, try on it data.py functions and compute the examples' mean and variance.

2. Bayes Classifier

Show that for a bayes classifier:

$$\frac{P(X|Y=0)}{P(X|Y=1)} > \frac{P(Y=1)}{P(Y=0)} \Leftrightarrow \hat{y} = 0$$

.....

$$\begin{split} \hat{y} &= \mathrm{argmax}_{i \in \{0,1\}} P(Y=i|X) = 0, \\ \Leftrightarrow &P(Y=0|X) > P(Y=1|X) \\ \Leftrightarrow &\frac{P(X|Y=0)P(Y=0)}{P(X)} > \frac{P(X|Y=1)P(Y=1)}{P(X)} \end{split}$$

$$\Leftrightarrow \frac{P(X|Y=0)}{P(X|Y=1)} > \frac{P(Y=1)}{P(Y=0)}$$

.....

In practice instead of estimating P(Y=i), the ratio $\frac{P(Y=1)}{P(Y=0)}$ is replaced by a threshold θ , which is tuned to minimize the error.

- Generate a training set of N_0 points from a gaussian distribution $\mathcal{N}(-0.5,1)$ (using random.gauss(mean,std), don't forget import random) and N_1 points from a $\mathcal{N}(0.5,1)$.
- Estimate with gaussian models $\hat{p}_i(x)$ the densities P(X|Y=i) by maximizing the likelihoods and compare the estimated values to the actual ones.
- On a validation set tune θ and compare its value to $\frac{N_1}{N_0}$. (Hint: For a validation set $\{(x_1,y_1),\ldots,(x_n,y_n)\}$, sort the ratios $\frac{\hat{p}_0(x_1)}{\hat{p}_1(x_1)},\ldots,\frac{\hat{p}_0(x_n)}{\hat{p}_1(x_n)}$ in increasing order, and compute the error for θ equal to each ratio. Choose the θ corresponding to the smallest error.)

3. Implement a K Nearest Neighbors classification function.

Hint: Use bbox.py as a model.

Edit decision.py to observe the modification of the decision function over a 2 dimensions database with respect to the hyperparameter K variation. And compare with the decision function of bbox.py (Parzen Window).

4. Curse of dimensionality

Let place ourselves in a 1 Nearest Neighbor framework. We have an m dimensional training set D_{train} from which the labels of a test set D_{test} are estimated. We want to show empirically that for non-structured data:

$$\frac{d_{max}}{d_{min}} \longrightarrow 1$$
 when $m \rightarrow \infty$

(Which makes NN meaningless in high dimension.)

• Plot the average of $\frac{d_{max}}{d_{min}}$ against m.

- Generate using random.uniform(0,1), D_{train} and D_{test} for several values of m.
- Compute the maximum and minimum euclidian distances of each of the test examples to the training examples.

	••••••
See dim_curse.py.	