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1 Some theoretical derivation

1. Show that the empirical risk is an unbiased estimate of the risk.
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2. Show that R(f*(Dtmm), D;cst) is an unbiased estimate of the risk.

E R(f* (Dtrain)7 Dtest) = R(f*(Dtrain))a s€ee question 1.

3. Show the bias-variance-noise decomposition of the risk in a re-
gression problem using mean squared loss function. Let ¥ =
f(X) + € with € ~ N(0,02), and fp(X) an estimator of f(X), learned
over the training set D.

The expected prediction error at a particular point X = xq is:
Err(zg) = E[Y - fo(x0))?1X = o)
= E[(Y — E[fp(x0)] + E[fp(z0)] — fp(20))*| X = m0]
= EB[Y — E[fp(x0)))*|X = x0] + E [(E[fp(z0)] — fp(0))?]
=2 E[(Y = E[fp(z0)]) - (E[fp(w0)] = fp(20))| X = 0]
(2)



Given that: F [(Y — E[fD(xo)]) . (E[fD(.To)} — fD(l‘o))|X = l‘o] =0

Err(zg) = E[Y - E[fp(x0)]))?|X = zo| + Var [fp(zo)]
= E[(f(zo) + €~ E[fp(x0)])?] + Var[fp(x0)]
= E[(f(z0) = E[fp(0)])?] + E [¢’] + Var [fp(wo)]
= [Bias[fp(x0)]]* + o2 + Var [fp(x0)]

(3)
Since,
E[Err(zo)] = E[E[Y — fp(z0))?*|X = zo]]
= E[(Y - fp(X))’]
= R(fD)7
(4)
and Err(z;), Vi are independent,
¥ LB = 3 [1Bas ol +o + Varlo(e]
(5)

is an unbiased estimator of the risk R(fp) = E [(Y — fp(X))?].

. Show that the capacity of a set of linear discriminants of dimen-
sion d is at least d + 1.

Let F = {f|Vx € RY, f(x) = sign(w - x + b),w € R% b € R}.

We will first show that the capacity of the set of linear discriminants
of dimension d, h(F) > d. For that, it is enough to produce d points
Z1,...,%q, such that for any labeling yi,...,yq (y; € {—1,1}), we are

able to exhibit a function f € F classifying the points in agreement with
the labeling.

Choosing,

b=0and 'w = (y1,...,yq) does the trick. Indeed Vk € {1,...,d},
d
flzk) = sign(w-z,+b) = sign(z wjxfc)
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= sign(w") =y



To show that h(F) > d + 1, we just need to use the same z1, - -, x4 and
w, define 2441 = (0,---,0) and set b = %41
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(b) d=2, 4 points, cannot
(a) d=2, 3 points make the {z1,z2}/{x3,24}
classification

Some implementations

. Getting familiarized with python
Download:
e train2d, train2d_target, valid2d and valid2d_target some sim-
ple data,
e intro.py a program with simple commands,
e bbox.py some methods related to a black box learner,

e decision.py a set of tools for plotting the decision function.

Open them with a smart enough editor (eg C:\Program Files\Notepad2\Notepad?2.exe),
Explore them using ipython. Try for example:

> cd toyour\download\path
> run -i intro.py
> 7bbox.bbox_capacity()

. Make a function which computes the classification error C,,.,,
and plot the C,,,. vs the capacity of the black box learner, for
the training set and the validation set.

Easy...
. Estimate the Bias and Variance of a regression function, using

generate.py, and show what happens when the capacity of the
learner increase.



Let used as estimators of the bias and variance of a regression function:
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where D;.q is a test set and
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DF Yk e {1,...,100} are training sets sampled from the same distribution
as Dtest .

For an implementation see the file bias_var.py.
. Implement the leave-one-out cross-validation strategy to esti-

mate the expected risk of a given function which depends on
some hyper-parameter.

Generate some data (train, valid and test set) with generate.py and see
files xv.py and xvtest.py



