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1 Some theoretical derivation

1. Show that the empirical risk is an unbiased estimate of the risk.

E
[
R̂(f,D)

]
= E

[
1
N

N∑

i=1

L(f, Zi)

]

=
1
N

N∑

i=1

E [L(f, Zi)] , Zis are independent

=
1
N

N∑

i=1

E [L(f, Z)] , Zis are identically distributed

=
1
N

NE [L(f, Z)]

= R(f)
(1)

2. Show that R̂(f∗(Dtrain), Dtest) is an unbiased estimate of the risk.

E
[
R̂(f∗(Dtrain), Dtest)

]
= R(f∗(Dtrain)), see question 1.

3. Show the bias-variance-noise decomposition of the risk in a re-
gression problem using mean squared loss function. Let Y =
f(X) + ε with ε ∼ N (0, σ2

ε ), and fD(X) an estimator of f(X), learned
over the training set D.

The expected prediction error at a particular point X = x0 is:

Err(x0) = E
[
(Y − fD(x0))2|X = x0

]

= E
[
(Y − E[fD(x0)] + E[fD(x0)]− fD(x0))2|X = x0

]

= E
[
(Y − E[fD(x0)])2|X = x0

]
+ E

[
(E[fD(x0)]− fD(x0))2

]

−2 · E [(Y − E[fD(x0)]) · (E[fD(x0)]− fD(x0))|X = x0]
(2)
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Given that: E [(Y − E[fD(x0)]) · (E[fD(x0)]− fD(x0))|X = x0] = 0

Err(x0) = E
[
(Y − E[fD(x0)])2|X = x0

]
+ V ar [fD(x0)]

= E
[
(f(x0) + ε− E[fD(x0)])2

]
+ V ar [fD(x0)]

= E
[
(f(x0)− E[fD(x0)])2

]
+ E

[
ε2

]
+ V ar [fD(x0)]

= [Bias [fD(x0)]]
2 + σ2

ε + V ar [fD(x0)]
(3)

Since,

E [Err(x0)] = E
[
E

[
(Y − fD(x0))2|X = x0

]]

= E
[
(Y − fD(X))2

]

= R(fD),
(4)

and Err(xi), ∀i are independent,

1
N

N∑

i=1

Err(xi) =
1
N

N∑

i=1

[
[Bias [fD(xi)]]

2 + σ2
ε + V ar [fD(xi)]

]

(5)

is an unbiased estimator of the risk R(fD) = E
[
(Y − fD(X))2

]
.

4. Show that the capacity of a set of linear discriminants of dimen-
sion d is at least d + 1.
Let F = {f |∀x ∈ Rd, f(x) = sign(w · x + b), w ∈ Rd, b ∈ R}.
We will first show that the capacity of the set of linear discriminants
of dimension d, h(F) ≥ d. For that, it is enough to produce d points
x1, . . . , xd, such that for any labeling y1, . . . , yd (yj ∈ {−1, 1}), we are
able to exhibit a function f ∈ F classifying the points in agreement with
the labeling.
Choosing,

x1 = (1, 0, 0, . . . , 0)
x2 = (0, 1, 0, . . . , 0)

. . .
xd = (0, 0, 0, . . . , 1),

b = 0 and tw = (y1, . . . , yd) does the trick. Indeed ∀k ∈ {1, . . . , d},

f(xk) = sign(w · xk + b) = sign(
d∑

j=1

wjxj
k)

= sign(wk) = yk

(6)
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To show that h(F) ≥ d + 1, we just need to use the same x1, · · · , xd and
w, define xd+1 = (0, · · · , 0) and set b = yd+1

2 .

� � � ��� � � ��� � � � � �
� �

� ��� �

�

��� �

�

� � �

�	� �	


�	�

(a) d=2, 3 points
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(b) d=2, 4 points, cannot
make the {x1, x2}/{x3, x4}
classification

2 Some implementations

1. Getting familiarized with python

Download:

• train2d, train2d_target, valid2d and valid2d_target some sim-
ple data,

• intro.py a program with simple commands,

• bbox.py some methods related to a black box learner,

• decision.py a set of tools for plotting the decision function.

Open them with a smart enough editor (eg C:\ProgramÃFiles\Notepad2\Notepad2.exe),

Explore them using ipython. Try for example:

> cd toyour\download\path
> run -i intro.py
> ?bbox.bbox_capacity()

2. Make a function which computes the classification error Cerr,
and plot the Cerr vs the capacity of the black box learner, for
the training set and the validation set.

Easy...

3. Estimate the Bias and Variance of a regression function, using
generate.py, and show what happens when the capacity of the
learner increase.
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Let used as estimators of the bias and variance of a regression function:

bias2(f̂) =
1

|Dtest|
∑

(xi,yi)∈Dtest

bias2(f̂(xi))

var(f̂) =
1

|Dtest|
∑

(xi,yi)∈Dtest

var(f̂(xi))

where Dtest is a test set and

bias2(f̂(xi)) =

[
yi − 1

100

100∑

k=1

fDk(xi)

]2

,

var(f̂(xi)) =
1

100

100∑

k=1

[fDk(xi)]
2 −

[
1

100

100∑

k=1

fDk(xi)

]2

,

Dk, ∀k ∈ {1, . . . , 100} are training sets sampled from the same distribution
as Dtest.

For an implementation see the file bias_var.py.

4. Implement the leave-one-out cross-validation strategy to esti-
mate the expected risk of a given function which depends on
some hyper-parameter.

Generate some data (train, valid and test set) with generate.py and see
files xv.py and xvtest.py
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