Statistical Machine Learning from Data Hidden Markov Models

Samy Bengio

IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland bengio@idiap.ch http://www.idiap.ch/~bengio

December 21, 2005

- 2 Hidden Markov Models
- 3 HMMs for Speech Recognition
- Practical Aspects

Markovian Models

Hidden Markov Models HMMs for Speech Recognition Practical Aspects Introduction Graphical View Training

- 2 Hidden Markov Models
- 3 HMMs for Speech Recognition
- Practical Aspects

Introduction Graphical View Training

Markov Models

• Stochastic process of a temporal sequence: the probability distribution of the variable q at time t depends on the variable q at times t - 1 to 1.

$$P(q_1, q_2, \dots, q_T) = P(q_1^T) = P(q_1) \prod_{t=2}^T P(q_t | q_1^{t-1})$$

• First Order Markov Process:

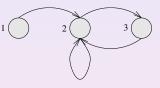
$$P(q_t|q_1^{t-1}) = P(q_t|q_{t-1})$$

• Markov Model: model of a Markovian process with discrete states.

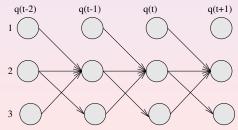
Introduction Graphical View Training

Markov Models (Graphical View)

• A Markov model:



• A Markov model unfolded in time:



Introduction Graphical View Training

Training Markov Models

 A Markov model is represented by all its transition probabilities:

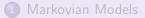
$$P(q_t = i | q_{t-1} = j) \quad \forall i, j$$

- Given a training set of sequences X, training means re-estimating these probabilities.
- Simply count them to obtain the maximum likelihood solution:

$$P(q_t = i | q_{t-1} = j) = \frac{\#(q_t = i \text{ and } q_{t-1} = j | X)}{\#(q_{t-1} = j | X)}$$

• Example: observe the weather today assuming it depends on the previous day.

ntroduction EM for HMMs The Viterbi Algorithm Applications

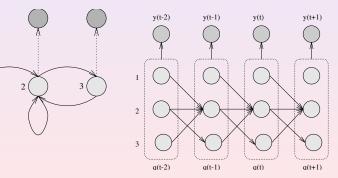


- 2 Hidden Markov Models
- 3 HMMs for Speech Recognition
- 4 Practical Aspects

Introduction EM for HMMs The Viterbi Algorithm Applications

Hidden Markov Models

- A hidden Markov model unfolded in time:
- A hidden Markov model:



Introduction EM for HMMs The Viterbi Algorithm Applications

Elements of an HMM

Hidden Markov Model: Markov Model whose state is not observed, but of which one can observe a manifestation (a variable x_t which depends only on q_t).

- A finite number of states N.
- Transition probabilities between states, which depend only on previous state: $P(q_t = i | q_{t-1} = j, \theta)$.
- Emission probabilities, which depend only on the current state: $p(x_t|q_t=i, \theta)$ (where x_t is observed).
- Initial state probabilities: $P(q_0 = i|\theta)$.
- Each of these 3 sets of probabilities have parameters θ to estimate.

Introduction EM for HMMs The Viterbi Algorithm Applications

The 3 Problems of HMMs

- The HMM model gives rise to 3 different problems:
 - Given an HMM parameterized by θ, can we compute the likelihood of a sequence X = x₁^T = {x₁, x₂,..., x_T}:

$$p(x_1^T|\theta)$$

• Given an HMM parameterized by θ and a set of sequences D_n , can we select the parameters θ^* such that:

$$heta^* = rg\max_{ heta} \prod_{p=1}^n p(X(p)| heta)$$

 Given an HMM parameterized by θ, can we compute the optimal path Q through the state space given a sequence X:

$$Q^* = rg\max_Q p(X,Q| heta)$$

Introduction EM for HMMs The Viterbi Algorithm Applications

HMMs as Generative Processes

HMMs can be use to generate sequences:

- Let us define a set of starting states with initial probabilities $P(q_0 = i)$.
- Let us also define a set of final states.
- Then for each sequence to generate:
 - Select an initial state j according to $P(q_0)$.
 - 2 Select the next state *i* according to $P(q_t = i | q_{t-1} = j)$.
 - Emit an output according to the emission distribution P(x_t|q_t = i).
 - If i is a final state, then stop, otherwise loop to step 2.

Introduction EM for HMMs The Viterbi Algorithm Applications

Markovian Assumptions

• Emissions: the probability to emit x_t at time t in state $q_t = i$ does not depend on anything else:

$$p(x_t|q_t = i, q_1^{t-1}, x_1^{t-1}) = p(x_t|q_t = i)$$

• Transitions: the probability to go from state *j* to state *i* at time *t* does not depend on anything else:

$$P(q_t = i | q_{t-1} = j, q_1^{t-2}, x_1^{t-1}) = P(q_t = i | q_{t-1} = j)$$

• Moreover, this probability does not depend on time t:

$$P(q_t = i | q_{t-1} = j)$$
 is the same for all t

we say that such Markov models are homogeneous.

Introduction EM for HMMs The Viterbi Algorithm Applications

Derivation of the Forward Variable α

the probability of having generated the sequence x_1^t and being in state *i* at time *t*:

$$\begin{aligned} \alpha(i,t) &\stackrel{\text{def}}{=} p(x_1^t, q_t = i) \\ &= p(x_t | x_1^{t-1}, q_t = i) p(x_1^{t-1}, q_t = i) \\ &= p(x_t | q_t = i) \sum_j p(x_1^{t-1}, q_t = i, q_{t-1} = j) \\ &= p(x_t | q_t = i) \sum_j P(q_t = i | x_1^{t-1}, q_{t-1} = j) p(x_1^{t-1}, q_{t-1} = j) \\ &= p(x_t | q_t = i) \sum_j P(q_t = i | q_{t-1} = j) p(x_1^{t-1}, q_{t-1} = j) \\ &= p(x_t | q_t = i) \sum_j P(q_t = i | q_{t-1} = j) \alpha(j, t-1) \end{aligned}$$

Introduction EM for HMMs The Viterbi Algorithm Applications

From α to the Likelihood

- Reminder: $\alpha(i, t) \stackrel{\text{def}}{=} p(x_1^t, q_t = i)$
- Initial condition:

 $lpha(i,0) = P(q_0 = i)
ightarrow$ prior probabilities of each state i

- Then let us compute $\alpha(i, t)$ for each state *i* and each time *t* of a given sequence x_1^T
- Afterward, we can compute the likelihood as follows:

$$p(x_1^T) = \sum_i p(x_1^T, q_T = i)$$
$$= \sum_i \alpha(i, T)$$

• Hence, to compute the likelihood $p(x_1^T)$, we need $\mathcal{O}(N^2 \cdot T)$ operations, where N is the number of states

Introduction EM for HMMs The Viterbi Algorithm Applications

EM Training for HMM

- For HMM, the hidden variable *Q* will describe in which state the HMM was for each observation *x*_t of a sequence *X*.
- The joint likelihood of all sequences *X*(*I*) and the hidden variable *Q* is then:

$$p(X, Q|\theta) = \prod_{l=1}^{n} p(X(l), Q|\theta)$$

• Let us introduce the following indicator variable:

$$q_{i,t} = \begin{cases} 1 & \text{if } q_t = i \\ 0 & \text{otherwise} \end{cases}$$

Introduction EM for HMMs The Viterbi Algorithm Applications

Joint Likelihood

Let us now use our indicator variables q to instanciate Q:

$$p(X, Q|\theta) = \prod_{l=1}^{n} p(X(l), Q|\theta)$$

=
$$\prod_{l=1}^{n} \left(\prod_{i=1}^{N} P(q_0 = i)^{q_{i,0}} \right) \cdot$$
$$\prod_{t=1}^{T_l} \prod_{i=1}^{N} p(x_t(l)|q_t = i)^{q_{i,t}} \prod_{j=1}^{N} P(q_t = i|q_{t-1} = j)^{q_{i,t} \cdot q_{j,t-1}}$$

Introduction EM for HMMs The Viterbi Algorithm Applications

Joint Log Likelihood

$$\log p(X, Q|\theta) = \sum_{l=1}^{n} \sum_{i=1}^{N} q_{i,0} \log P(q_0 = i) + \sum_{l=1}^{n} \sum_{t=1}^{T_l} \sum_{i=1}^{N} q_{i,t} \log p(x_t(l)|q_t = i) + \sum_{l=1}^{n} \sum_{t=1}^{T_l} \sum_{i=1}^{N} \sum_{j=1}^{N} q_{i,t} \cdot q_{j,t-1} \log P(q_t = i|q_{t-1} = j)$$

Introduction EM for HMMs The Viterbi Algorithm Applications

Auxiliary Function

Let us now write the corresponding auxiliary function:

$$\begin{aligned} A(\theta, \theta^{s}) &= E_{Q}[\log p(X, Q|\theta)|X, \theta^{s}] \\ &= \sum_{l=1}^{n} \sum_{i=1}^{N} E_{Q}[q_{i,0}|X, \theta^{s}] \log P(q_{0} = i) + \\ &\sum_{l=1}^{n} \sum_{t=1}^{T_{l}} \sum_{i=1}^{N} E_{Q}[q_{i,t}|X, \theta^{s}] \log p(x_{t}(l)|q_{t} = i) + \\ &\sum_{l=1}^{n} \sum_{t=1}^{T_{l}} \sum_{i=1}^{N} \sum_{j=1}^{N} E_{Q}[q_{i,t} \cdot q_{j,t-1}|X, \theta^{s}] \log P(q_{t} = i|q_{t-1} = j) \end{aligned}$$

From now on, let us forget about index / for simplification.

Introduction EM for HMMs The Viterbi Algorithm Applications

Derivation of the Backward Variable β

the probability to generate the rest of the sequence x_{t+1}^T given that we are in state *i* at time *t*

$$\begin{split} \beta(i,t) &\stackrel{\text{def}}{=} p(x_{t+1}^{T}|q_{t}=i) \\ &= \sum_{j} p(x_{t+1}^{T},q_{t+1}=j|q_{t}=i) \\ &= \sum_{j} p(x_{t+1}|x_{t+2}^{T},q_{t+1}=j,q_{t}=i) p(x_{t+2}^{T},q_{t+1}=j|q_{t}=i) \\ &= \sum_{j} p(x_{t+1}|q_{t+1}=j) p(x_{t+2}^{T}|q_{t+1}=j,q_{t}=i) P(q_{t+1}=j|q_{t}=i) \\ &= \sum_{j} p(x_{t+1}|q_{t+1}=j) p(x_{t+2}^{T}|q_{t+1}=j) P(q_{t+1}=j|q_{t}=i) \\ &= \sum_{j} p(x_{t+1}|q_{t+1}=j) \beta(j,t+1) P(q_{t+1}=j|q_{t}=i) \end{split}$$

Introduction EM for HMMs The Viterbi Algorithm Applications

Final Details About β

- Reminder: $\beta(i, t) = p(x_{t+1}^T | q_t = i)$
- Final condition:

$$eta(i, T) = \left\{ egin{array}{cc} 1 & ext{if } i ext{ is a final state} \\ 0 & ext{otherwise} \end{array}
ight.$$

Hence, to compute all the β variables, we need O(N² · T) operations, where N is the number of states

Introduction EM for HMMs The Viterbi Algorithm Applications

E-Step for HMMs

• Posterior on emission distributions:

$$E_Q[q_{i,t}|X, \theta^s] = P(q_t = i|x_1^T, \theta^s) = P(q_t = i|x_1^T)$$

= $\frac{p(x_1^T, q_t = i)}{p(x_1^T)}$
= $\frac{p(x_{t+1}^T|q_t = i, x_1^t)p(x_1^t, q_t = i)}{p(x_1^T)}$
= $\frac{p(x_{t+1}^T|q_t = i)p(x_1^t, q_t = i)}{p(x_1^T)}$
= $\frac{\beta(i, t) \cdot \alpha(i, t)}{\sum_i \alpha(j, T)}$

Introduction EM for HMMs The Viterbi Algorithm Applications

E-Step for HMMs

• Posterior on transition distributions:

$$E_Q[q_{i,t} \cdot q_{j,t-1} | X, \theta^s] = P(q_t = i, q_{t-1} = j | x_1^T, \theta^s)$$

$$= \frac{p(x_{1}^{T}, q_{t} = i, q_{t-1} = j)}{p(x_{1}^{T})}$$

$$= \frac{p(x_{t+1}^{T}|q_{t}=i)P(q_{t}=i|q_{t-1}=j)p(x_{t}|q_{t}=i)p(x_{1}^{t-1}, q_{t-1}=j)}{p(x_{1}^{T})}$$

$$= \frac{\beta(i, t)P(q_{t}=i|q_{t-1}=j)p(x_{t}|q_{t}=i)\alpha(j, t-1)}{\sum_{j}\alpha(j, T)}$$

Introduction EM for HMMs The Viterbi Algorithm Applications

E-Step for HMMs

• Posterior on initial state distribution:

$$\begin{aligned} \Xi_Q[q_{i,0}|X,\theta^p] &= P(q_0 = i|x_1^T, \theta^s) = P(q_0 = i|x_1^T) \\ &= \frac{p(x_1^T, q_0 = i)}{p(x_1^T)} \\ &= \frac{p(x_1^T|q_0 = i)P(q_0 = i)}{p(x_1^T)} \\ &= \frac{\beta(i,0) \cdot P(q_0 = i)}{\sum_j \alpha(j,T)} \end{aligned}$$

Introduction EM for HMMs The Viterbi Algorithm Applications

M-Step for HMMs

• Find the parameters θ that maximizes A, hence search for

$$\frac{\partial A}{\partial \theta} = 0$$

• When transition distributions are represented as tables, using a Lagrange multiplier, we obtain:

$$P(q_t = i | q_{t-1} = j) = \frac{\sum_{t=1}^{T} P(q_t = i, q_{t-1} = j | x_1^T, \theta^s)}{\sum_{t=1}^{T} P(q_{t-1} = j | x_1^T, \theta^s)}$$

• When emission distributions are implemented as GMMs, use already given equations, weighted by the posterior on emissions $P(q_t = i | x_1^T, \theta^s)$.

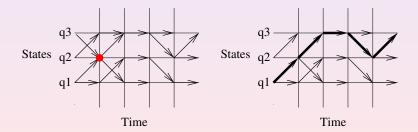
Introduction EM for HMMs The Viterbi Algorithm Applications

The Most Likely Path (Graphical View)

• The Viterbi algorithm finds the best state sequence.

Compute the patial paths

Backtrack in time



Introduction EM for HMMs The Viterbi Algorithm Applications

The Viterbi Algorithm for HMMs

The Viterbi algorithm finds the best state sequence.

$$V(i, t) \stackrel{\text{def}}{=} \max_{q_1^{t-1}} p(x_1^t, q_1^{t-1}, q_t = i)$$

$$= \max_{q_1^{t-1}} p(x_t | x_1^{t-1}, q_1^{t-1}, q_t = i) p(x_1^{t-1}, q_1^{t-1}, q_t = i)$$

$$= p(x_t | q_t = i) \max_{q_1^{t-2}} \max_j p(x_1^{t-1}, q_1^{t-2}, q_t = i, q_{t-1} = j)$$

$$= p(x_t | q_t = i) \max_{q_1^{t-2}} \max_j p(q_t = i | q_{t-1} = j) p(x_1^{t-1}, q_1^{t-2}, q_{t-1} = j)$$

$$= p(x_t | q_t = i) \max_j p(q_t = i | q_{t-1} = j) \max_{q_1^{t-2}} p(x_1^{t-1}, q_1^{t-2}, q_{t-1} = j)$$

$$= p(x_t | q_t = i) \max_j p(q_t = i | q_{t-1} = j) \max_{q_1^{t-2}} p(x_1^{t-1}, q_1^{t-2}, q_{t-1} = j)$$

Introduction EM for HMMs The Viterbi Algorithm Applications

From Viterbi to the State Sequence

- Reminder: $V(i, t) = \max_{q_1^{t-1}} p(x_1^t, q_1^{t-1}, q_t = i)$
- Let us compute V(i, t) for each state i and each time t of a given sequence x₁^T
- Moreover, let us also keep for each V(i, t) the associated argmax previous state j
- Then, starting from the state i = arg max V(j, T) backtrack to decode the most probable state sequence.
- Hence, to compute all the V(i, t) variables, we need $\mathcal{O}(N^2 \cdot T)$ operations, where N is the number of states

Introduction EM for HMMs The Viterbi Algorithm Applications

Applications of HMMs

- Classifying sequences such as...
 - DNA sequences (which family)
 - gesture sequences
 - video sequences
 - phoneme sequences
 - etc.
- Decoding sequences such as...
 - continuous speech recognition
 - handwriting recognition
 - sequence of events (meeting, surveilance, games, etc)

Embbeded Training Vord Error Rates Discriminant Approach

Markovian Models

- 2 Hidden Markov Models
- 3 HMMs for Speech Recognition

4 Practical Aspects

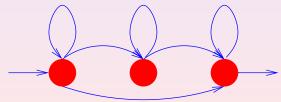
Embbeded Training Word Error Rates Discriminant Approach

HMMs for Speech Recognition

• Application: continuous speech recognition:

Find a sequence of phonemes (or words) given an acoustic sequence

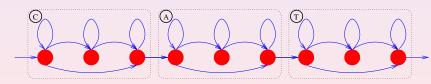
• Idea: use a phoneme model



Embbeded Training Word Error Rates Discriminant Approach

Embbeded Training of HMMs

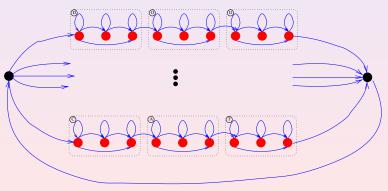
- For each acoustic sequence in the training set, create a new HMM as the concatenation of the HMMs representing the underlying sequence of phonemes.
- Maximize the likelihood of the training sentences.



Embbeded Training Word Error Rates Discriminant Approach

HMMs: Decoding a Sentence

- Decide what is the accepted vocabulary.
- Optionally add a language model: P(word sequence)
- Efficient algorithm to find the optimal path in the decoding HMM:



Embbeded Training Word Error Rates Discriminant Approach

Measuring Error

- How do we measure the quality of a speech recognizer?
- Problem: the target solution is a sentence, the obtained solution is also a sentence, but they might have different size!
- Proposed solution: the Edit Distance:
 - assume you have access to the operators insert, delete, and substitute,
 - what is the smallest number of such operators we need to go from the obtained to the desired sentence?
 - An efficient algorithm exists to compute this.
- At the end, we measure the error as follows:

$$\mathsf{WER} = \frac{\#\mathsf{ins} + \#\mathsf{del} + \#\mathsf{subst}}{\#\mathsf{words}}$$

• Note that the word error rate (WER) can be greater than 1...

Embbeded Training Word Error Rates Discriminant Approach

Maximum Mutual Information

- Using the Maximum Likelihood criterion for a classification task might sometimes be worse than using a discriminative approach
- What about changing the criterion to be more discriminative?
- Maximum Mutual Information (MMI) between word (*W*) and accoustic (*A*) sequences:

$$I(A, W) = \log \frac{P(A, W)}{P(A)P(W)}$$

= $\log P(A|W)P(W) - \log P(A) - \log P(W)$
= $\log P(A|W) - \log P(A)$
= $\log P(A|W) - \sum_{w} \log P(A|w)P(w)$

• Apply gradient ascent: $\frac{\partial I(A,W)}{\partial \theta}$.

Various Practical Aspects Imbalance

Markovian Models

- 2 Hidden Markov Models
- 3 HMMs for Speech Recognition

Practical Aspects

Various Practical Aspects Imbalance

Practical Aspects

• Capacity tuned by the following hyper-parameters:

- Number of states (or values the hidden variable can take)
- Non-zero transitions (full-connect, left-to-right, etc)
- Capacity of underlying emission models
- Number of training iterations
- Initialization:
 - If the training set is aligned, use this information
 - Otherwise, uniform for transitions, K-Means for GMM-based emissions
- Computational contraint:
 - Work in the logarithmic domain!

Various Practical Aspects Imbalance

Imbalance between Transitions and Emissions

- A problem often seen in speech recognition...
- Decoding with Viterbi:

$$V(i, t) = p(x_t | q_t = i) \max_j P(q_t = i | q_{t-1} = j) V(j, t-1)$$

- Emissions represented by GMMs: densities depend on the number of dimensions of *x*_t.
- Practical estimates on Numbers'95 database (39 dimensions):

	Variance
$\log P(q_t q_{t-1})$	9.8
$\log p(x_t q_t)$	11486.0

Comparison of variances of log distributions during decoding