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Reminder: Basics on Probabilities

A few basic equalities that are often used:

1 (conditional probabilities)

P(A,B) = P(A|B) · P(B)

2 (Bayes rule)

P(A|B) =
P(B|A) · P(A)

P(B)

3 If (
⋃

Bi = Ω) and ∀i , j 6= i (Bi
⋂

Bj = ∅) then

P(A) =
∑

i

P(A,Bi )
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What is a Gaussian Mixture Model?

A Gaussian Mixture Model (GMM) is a distribution
The likelihood given a Gaussian distribution is

N (x |µ,Σ) =
1

(2π)
d
2

√
|Σ|

exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
where d is the dimension of x , µ is the mean and Σ is the
covariance matrix of the Gaussian. Σ is often diagonal.
The likelihood given a GMM is

p(x) =
N∑

i=1

wi · N (x |µi ,Σi )

where N is the number of Gaussians and wi is the weight of
Gaussian i , with ∑

i

wi = 1 and ∀i : wi ≥ 0
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Characteristics of a GMM

While ANNs are universal approximators of functions,

GMMs are universal approximators of densities.

(as long as there are enough Gaussians of course)

Even diagonal GMMs are universal approximators.

Full rank GMMs are not easy to handle: number of
parameters is the square of the number of dimensions.

GMMs can be trained by maximum likelihood using an
efficient algorithm: Expectation-Maximization.
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Practical Applications using GMMs

Biometric person authentication (using voice, face,
handwriting, etc):

one GMM for the client
one GMM for all the others
Bayes decision =⇒ likelihood ratio

Any highly imbalanced classification task

one GMM per class, tuned by maximum likelihood
Bayes decision =⇒ likelihood ratio

Dimensionality reduction

Quantization
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Basics of Expectation-Maximization

Objective: maximize the likelihood p(X |θ) of the data X
drawn from an unknown distribution, given the model
parameterized by θ:

θ∗ = arg max
θ

p(X |θ) = arg max
θ

n∏
p=1

p(xp|θ)

Basic ideas of EM:

Introduce a hidden variable such that its knowledge would
simplify the maximization of p(X |θ)
At each iteration of the algorithm:

E-Step: estimate the distribution of the hidden variable given
the data and the current value of the parameters
M-Step: modify the parameters in order to maximize the joint
distribution of the data and the hidden variable
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EM for GMM (Graphical View, 1)

Hidden variable: for each point, which Gaussian generated it?

A

B
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EM for GMM (Graphical View, 2)

E-Step: for each point, estimate the probability that each Gaussian
generated it

A

B

P(A) = 0.6
P(B) = 0.4

P(A) = 0.2
P(B) = 0.8
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EM for GMM (Graphical View, 3)

M-Step: modify the parameters according to the hidden variable to
maximize the likelihood of the data (and the hidden variable)

A

B

P(A) = 0.6
P(B) = 0.4

P(A) = 0.2
P(B) = 0.8
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EM: More Formally

Let us call the hidden variable Q.

Let us consider the following auxiliary function:

A(θ, θs) = EQ [log p(X ,Q|θ)|X , θs ]

It can be shown that maximizing A

θs+1 = arg max
θ

A(θ, θs)

always increases the likelihood of the data p(X |θs+1), and a
maximum of A corresponds to a maximum of the likelihood.
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EM: Proof of Convergence

First let us develop the auxiliary function:

A(θ, θs) = EQ [log p(X ,Q|θ)|X , θs ]

=
∑
q∈Q

P(q|X , θs) log p(X , q|θ)

=
∑
q∈Q

P(q|X , θs) log(P(q|X , θ) · p(X |θ))

=

∑
q∈Q

P(q|X , θs) log P(q|X , θ)

+ log p(X |θ)
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EM: Proof of Convergence

then if we evaluate it at θs

A(θs , θs) =

∑
q∈Q

P(q|X , θs) log P(q|X , θs)

+ log p(X |θs)

the difference between two consecutive log likelihoods of the
data can be written as

log p(X |θ)− log p(X |θs) =

A(θ, θs)− A(θs , θs) +
∑
q∈Q

P(q|X , θs) log
P(q|X , θs)

P(q|X , θ)
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hence,

since the last part of the equation is a Kullback-Leibler
divergence which is always positive or null,
if A increases, the log likelihood of the data also increases
Moreover, one can show that when A is maximum, the
likelihood of the data is also at a maximum.
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EM for GMM: Hidden Variable

For GMM, the hidden variable Q will describe which Gaussian
generated each example.

If Q was observed, then it would be simple to maximize the
likelihood of the data: simply estimate the parameters
Gaussian by Gaussian

Moreover, we will see that we can easily estimate Q

Let us first write the mixture of Gaussian model for one xi :

p(xi |θ) =
N∑

j=1

P(j |θ)p(xi |j , θ)

Let us now introduce the following indicator variable:

qi ,j =

{
1 if Gaussian j emitted xi

0 otherwise
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EM for GMM: Auxiliary Function

We can now write the joint likelihood of all the X and q:

p(X ,Q|θ) =
n∏

i=1

N∏
j=1

P(j |θ)qi,j p(xi |j , θ)qi,j

which in log gives

log p(X ,Q|θ) =
n∑

i=1

N∑
j=1

qi ,j log P(j |θ) + qi ,j log p(xi |j , θ)
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EM for GMM: Auxiliary Function

Let us now write the corresponding auxiliary function:

A(θ, θs) = EQ [log p(X ,Q|θ)|X , θs ]

= EQ

 n∑
i=1

N∑
j=1

qi ,j log P(j |θ) + qi ,j log p(xi |j , θ)|X , θs


=

n∑
i=1

N∑
j=1

EQ [qi ,j |X , θs ] log P(j |θ) + EQ [qi ,j |X , θs ] log p(xi |j , θ)
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EM for GMM: E-Step and M-Step

A(θ, θs) =
n∑

i=1

N∑
j=1

EQ [qi ,j |X , θs ] log P(j |θ)+EQ [qi ,j |X , θs ] log p(xi |j , θ)

Hence, the E-Step estimates the posterior:

EQ [qi ,j |X , θs ] = 1 · P(qi ,j = 1|X , θs) + 0 · P(qi ,j = 0|X , θs)

= P(j |xi , θ
s) =

p(xi |j , θs)P(j |θs)

p(xi |θs)

and the M-step finds the parameters θ that maximizes A,
hence searching for

∂A

∂θ
= 0

for each parameter (µj , variances σ2
j , and weights wj).

Note however that wj should sum to 1.
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EM for GMM: M-Step for Means

A(θ, θs) =
n∑

i=1

N∑
j=1

EQ [qi ,j |X , θs ] log P(j |θ)+EQ [qi ,j |X , θs ] log p(xi |j , θ)

∂A

∂µj
=

n∑
i=1

∂A

∂ log p(xi |j , θ)
∂ log p(xi |j , θ)

∂µj

=
n∑

i=1

P(j |xi , θ
s)

∂ log p(xi |j , θ)
∂µj

=
n∑

i=1

P(j |xi , θ
s) ·

(xi − µj)

σ2
j

= 0
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EM for GMM: M-Step for Means

n∑
i=1

P(j |xi , θ
s) ·

(xi − µj)

σ2
j

= 0

=⇒ (removing constant terms in the sum)

n∑
i=1

P(j |xi , θ
s) · xi −

n∑
i=1

P(j |xi , θ
s) · µj = 0

n∑
i=1

P(j |xi , θ
s) · xi

n∑
i=1

P(j |xi , θ
s)

= µ̂j
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EM for GMM: M-Step for Variances

A(θ, θs) =
n∑

i=1

N∑
j=1

EQ [qi ,j |X , θs ] log P(j |θ)+EQ [qi ,j |X , θs ] log p(xi |j , θ)

∂A

∂σ2
j

=
n∑

i=1

∂A

∂ log p(xi |j , θ)
∂ log p(xi |j , θ)

∂σ2
j

=
n∑

i=1

P(j |xi , θ
s)

∂ log p(xi |j , θ)
∂σ2

j

=
n∑

i=1

P(j |xi , θ
s) ·

(
(xi − µj)

2

2σ4
j

− 1

2σ2
j

)
= 0
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EM for GMM: M-Step for Variances

n∑
i=1

P(j |xi , θ
s) ·

(
(xi − µj)

2

2σ4
j

− 1

2σ2
j

)
= 0

n∑
i=1

P(j |xi , θ
s)(xi − µj)

2

2σ4
j

−
n∑

i=1

P(j |xi , θ
s)

2σ2
j

= 0

n∑
i=1

P(j |xi , θ
s)(xi − µj)

2

σ2
j

−
n∑

i=1

P(j |xi , θ
s) = 0

n∑
i=1

P(j |xi , θ
s)(xi − µ̂j)

2

n∑
i=1

P(j |xi , θ
s)

= σ̂2
j
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EM for GMM: M-Step for Weights

We have the constraint that all weights wj should be positive and
sum to 1:

N∑
j=1

wj = 1

Incorporating it into the system:

J(θ, θs) = A(θ, θs) + (1−
N∑

j=1

wj) · λj

where λj are Lagrange multipliers.
So we need to derive J with respect to wj and to set it to 0.
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EM for GMM: M-Step for Weights

∂J

∂wj
=

∂J

∂A(θ, θs)

∂A(θ, θs)

∂wj
− λj

= 1 ·

(
n∑

i=1

P(j |xi , θ
s) · 1

wj

)
− λj = 0

ŵj =

n∑
i=1

P(j |xi , θ
s)

λj

and incorporating
the probabilistic
constraint, we get

ŵj =

n∑
i=1

P(j |xi , θ
s)

N∑
k=1

n∑
i=1

P(k|xi , θ
s)

=
1

n

n∑
i=1

P(j |xi , θ
s)
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EM for GMM: Update Rules

Means µ̂j =

n∑
i=1

xi · P(j |xi , θ
s)

n∑
i=1

P(j |xi , θ
s)

Variances σ̂2
j =

n∑
i=1

(xi − µ̂j)
2 · P(j |xi , θ

s)

n∑
i=1

P(j |xi , θ
s)

Weights: ŵj =
1

n

n∑
i=1

P(j |xi , θ
s)
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Initialization

EM is an iterative procedure that is very sensitive to initial
conditions!

Start from trash → end up with trash.

Hence, we need a good and fast initialization procedure.

Often used: K-Means.

Other options: hierarchical K-Means, Gaussian splitting.
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Capacity Control

How to control the capacity with GMMs?

selecting the number of Gaussians
constraining the value of the variances to be far from 0
(small variances =⇒ large capacity)

Use cross-validation on the desired criterion (Maximum
Likelihood, classification...)
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Adaptation Techniques

In some cases, you have access to only a few examples coming
from the target distribution...

... but many coming from a nearby distribution!

How can we profit from the big nearby dataset???

Solution: use adaptation techniques.

The most well known and used for GMMs: the Maximum A
Posteriori adaptation.
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MAP Adaptation

Normal maximum likelihood training for a dataset X :

θ∗ = arg max
θ

p(X |θ)

Maximum A Posteriori (MAP) training:

θ∗ = arg max
θ

p(θ|X )

= arg max
θ

p(X |θ)P(θ)

p(X )

= arg max
θ

p(X |θ)p(θ)

where p(θ) represents your prior belief about the distribution
of the parameters θ.
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Implementation

Which kind of prior distribution for p(θ) ?

Two objectives:

constraining θ to reasonable values
keep the EM algorithm tractable

Use conjugate priors:

Dirichlet distribution for weights
Gaussian densities for means and variances
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What is a Conjugate Prior?

A conjugate prior is chosen such that the corresponding
posterior belongs to the same functional family as the prior.

So we would like that p(X |θ)p(θ) is distributed according to
the same family as p(θ) and tractable.

Example:

Likelihood is Gaussian: p(X |θ) = K1 exp

(
− (x1 − µ1)

2

2σ2
1

)
Prior is Gaussian: p(θ) = K2 exp

(
− (x2 − µ2)

2

2σ2
2

)
Posterior is Gaussian:

p(X |θ)p(θ) = K1K2 exp

(
− (x1 − µ1)

2

2σ2
1

− (x2 − µ2)
2

2σ2
2

)
= K3 exp

(
− (x − µ)2

2σ2

)
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Conjugate Prior of Multinomials

Multinomial distribution:

P(X1 = x1, · · · ,Xn = xn|θ) =
N!∏n
i=1 xi !

n∏
i=1

θxi
i

where xi are nonnegative integers and
∑n

i=1 xi = N.

Dirichlet distribution with parameter u:

P(θ|u) =
1

Z (u)

n∏
i=1

θui−1
i

where θ1, · · · , θn ≥ 0 and
∑n

i=1 θi = 1 and u1, · · · , un ≥ 0.

Conjugate prior = dirichlet with parameter x + u:

P(X , θ|u) =
1

Z

n∏
i=1

θxi+ui−1
i
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Examples of Conjugate Priors

likelihood conjugate prior posterior
p(x |θ) p(θ) p(θ|x)

Gaussian(θ, σ) Gaussian(µ0, σ0) Gaussian(µ1, σ1)

Binomial(N, θ) Beta(r , s)
Beta
(r + n, s + N − n)

Poisson(θ) Gamma(r , s) Gamma(r + n, s + 1)

Multinomial(θ1, · · · , θk)
Dirichlet
(α1, · · · , αk)

Dirichlet
(α1 +n1, · · · , αk +
nk)
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Simple Implementation for MAP-GMMs
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Simple Implementation

Train a generic prior model p with large amount of available
data

=⇒ {wp
j , µp

j , σ
p
j }

One hyper-parameter: α ∈ [0, 1]: faith on prior model

Weights:

ŵj =

[
αwp

j + (1− α)
n∑

i=1

P(j |xi )

]
γ

where γ is a normalization factor (so that
∑

j

wj = 1)
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Simple Implementation

Means:

µ̂j = αµp
j + (1− α)

n∑
i=1

P(j |xi )xi

n∑
i=1

P(j |xi )

Variances:

σ̂j = α
(
σp

j + µp
j µ

p‘
j

)
+ (1− α)

n∑
i=1

P(j |xi )xix
‘
i

n∑
i=1

P(j |xi )

− µ̂j µ̂
‘
j
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Adapted GMMs for Person Authentication

Person authentication task:

accept access if P(Si |X) > P(S̄i |X)

with Si a client, S̄i all the other persons, and X an access
attributed to Si .

Using Bayes theorem, this becomes:

p(X|Si )

p(X|S̄i )
>

P(S̄i )

P(Si )
= ∆Si

≈ ∆

p(X|S̄i ) is trained on a large dataset

p(X|Si ) is MAP adapted from p(X|S̄i ).

∆ is found on a separate validation set to optimize a given
criterion.
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