Statistical Machine Learning from Data Decision Trees

Samy Bengio

IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland bengio@idiap.ch http://www.idiap.ch/~bengio

January 25, 2006

- 2 Training a Decision Tree
- 3 Controlling the Capacity of a Decision Tree

- 2 Training a Decision Tree
- 3 Controlling the Capacity of a Decision Tree

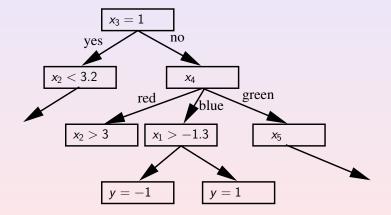
Rule Based Decisions

- Let D_n be a training set of n pairs (\mathbf{x}^i, y^i)
- Let y be a class (say -1 or 1)
- Let **x** be a vector of *d* attributes denoted $\{x_i | 1 \le j \le d\}$.
- A decision rule could be

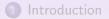
if x_3 is true AND $x_5 \leq 3.2$ then y = 1

- How to construct such a decision?
- This is the family of decision trees.

A Decision Tree



Information Theory Decision Stumps Recursion Continuous Input Variables



- 2 Training a Decision Tree
- 3 Controlling the Capacity of a Decision Tree

Information Theory Decision Stumps Recursion Continuous Input Variables

The Most Informative Feature

- At each given node *i* of the tree, we have a subset *D_i* of training examples.
- We would like to select a feature *j* such that we divide *D_i* wisely according to the task.
- The objective: after the segmentation of D_i , all examples in a node should ideally be of the same class: this is called purity.
- There are several heuristics to lean towards purity.
- Let us first look at the case for discrete attributes.
- The choice made by most decision tree algorithms:

maximize the information gain

Information Theory Decision Stumps Recursion Continuous Input Variables

Information Gain

maximize the information gain

$$IG_j = H(Y) - H(Y|X_j)$$

where H(Y) is the entropy of random variable Y (the average number of bits needed to transmit Y)

$$H(Y) = -\sum_{k} P(Y = k) \log P(Y = k)$$

and H(Y|X) is the conditional entropy...

$$H(Y|X_j) = -\sum_m P(X_j = m) \sum_k P(Y = k|X_j = m) \log P(Y = k|X_j = m)$$

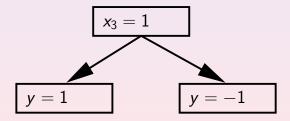
We thus select

$$j^* = rg\max_j IG_j$$

Decision Stumps

Information Theory Decision Stumps Recursion Continuous Input Variables

- A Stump is simply a one-level decision tree
- Hence, you select THE feature which maximizes the information gain in your whole data set



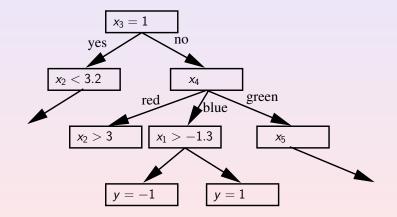
Recursion Step

Information Theory Decision Stumps Recursion Continuous Input Variables

- Take the original dataset
- Partition it according to the value of the attribute we split on
- For each partition, create a decision stump
- And do that recursively... until there is no more example to split
- You obtain a decision tree!

Information Theory Decision Stumps Recursion Continuous Input Variables

A Decision Tree



Information Theory Decision Stumps Recursion Continuous Input Variables

Continuous Input Variables

- What to do with non-discrete input variables?
- Instead of partitionning according to $X_j = k$
- Find the value of $X_j = t$ such that

 $H(Y|X_{j,t}) = \max_t H(Y|X_j < t) P(X_j < t) + H(Y|X_j \ge t) P(X_j \ge t)$

• Compute the information gain as usual:

$$IG_j = H(Y) - H(Y|X_{j,t})$$

 if IG_j is the maximum among features, Partition X_j according to X_j < t or not.

1 Introduction

- 2 Training a Decision Tree
- 3 Controlling the Capacity of a Decision Tree

Controlling the Capacity

- If you build a complete tree, it will learn by heart all your training set
- Hence, capacity is virtually infinite
- We need to create trees with controlled capacity
- There are various ways to do this:
 - Don't build the complete tree but stop before
 - Build the complete tree, and then prune it
 - ... according to some validation set or prior information...