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Parametric or Not?

The space F is often characterized to be parametric or not.

Parametric: the space is very small, and characterized by a
small number of parameters.

examples: a Gaussian distribution or a linear function
big prior on the solution

Non-Parametric: the space is infinite, constrained only by the
training data

examples: K nearest neighbors, Parzen Windows
small prior on the solution

Semi-Parametric:

examples: most machine learning algorithms!
small prior on the solution, characterized by a large number of
parameters
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Histograms - Example

For classification or regression: z = (x , y)

Let x be a k−dimensional vector

For each dimension d , divide the possible values xd into md

bins

Example, for 14 training examples of input dimension 2:

x1 < 5 5 ≤ x1 < 7 7 ≤ x1

x2 = red
y(0) = −3
y(1) = −4
y(2) = −2.8

y(3) = 2
y(4) = 1

y(5) = 3
y(6) = 4
y(7) = 2.8
y(8) = 2.5

x2 = blue
y(9) = −4.5
y(10) = −4

y(11) = 0.1
y(12) = 0.1
y(13) = 0.65
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Histograms - Training

Model: compute average value (on the training set) of ŷ
corresponding to each bin:

x1 < 5 5 ≤ x1 < 7 7 ≤ x1

x2 = red ŷ = −3.3 ŷ = 1.5 ŷ = 3.1
x2 = blue ŷ = 4.25 ŷ = 0.1 ŷ = 0.38

Test: given a new example x , select the corresponding bin and
output the associated ŷ

Can be extended to classification.

Capacity controlled by the total number of bins.

Total number of bins =
k∏

d=1

md
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Problem: The Curse of Dimensionality (1)

Combinatorial Explosion

What happens when the number of input dimensions grows?

The number of bins grows exponentially faster!

Most bins will get no representative training example

How can we estimate a new example that is in one of those
bins????

In fact, even the bins with some training examples are
probably not correctly estimated...
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K Nearest Neighbors

Very simple method, no training necessary

Needed:

a training set Dn = {z1, z2, · · · , zn} with zi = (xi , yi )
a distance function L(x1, x2). For instance, (x1 − x2)

2

a parameter K

For each test point x

select in Dn the K examples that are nearest to x according to
L(x , xi ) and keep their index (from Dn) in {s1, · · · , sK}
decision:

regression: ŷ =
1

K

KX
i=1

ysi

classification: ŷ = sign

 
1

K

KX
i=1

ysi

!
Capacity controlled by K .
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K-NN (Graphical View)

K = 1:
K = 2:
K = 3:
K = 4:
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KNN - Some Remarks

What does it mean to be nearest to an example?

Often used metric: Euclidean distance, or l2-norm

d =

√∑
i

(xi − ti )2

For KNN,
√
· is not necessary

How to select K ???

Reminder: K controls the capacity...

Hence, we can use a model selection technique
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Distances and the Curse of Dimensionality

Consider a regular grid of b bins per dimension in a d-dim
hypercube.

We have bd bins.

How many bins are not on the surface of the hypercube?
consider uniform data.(

b − 2

b

)d

chances of being in the center. −→ 0

When d is high, all data lie on the surface!

How many points of the training set can be on the same
surface? As d grows, less than one on average!

Each point is thus far from all the others...

Hence, all methods based on Euclidean distance are bound to
work on small dimensions only.
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KNN versus Parzen Windows

A A A AB B B B

?

KNN solution

Parzen window
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Parzen Windows

Very simple method, no training necessary

Needed:

a training set Dn = {z1, z2, · · · , zn} with zi = (xi , yi )

a kernel function K (x1, x2). For instance, exp(− ||x1−x2||2
2σ2 )

For each test point x (or z for density estimate)
decision:

regression: ŷr =

nX
i=1

yiK(x , xi )

nX
i=1

K(x , xi )

classification: ŷ = sign (ŷr )

density estimate: p̂(z) =
1

n

nX
i=1

1√
2πσ

K(x , xi )

Capacity controlled by σ
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Maximum Likelihood for Density Estimation

Given a set of examples Dn = {z1, z2, · · · , zn}
Objective: find a distribution p(z) that maximizes the
likelihood of future data

Select a set of distributions p(z |θ) with parameters θ.

The likelihood of Dn (all examples are iid):

L(Dn|θ) =
n∏

i=1

p(zi |θ)

Hence we search for:

θ∗ = arg max
θ

n∏
i=1

p(zi |θ) = arg max
θ

n∑
i=1

log p(zi |θ)

going into the log domain.
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Maximum Likelihood for Gaussians

Family of one-dimensional Gaussians with θ = {µ, σ}

p̂(z |θ) =
1√
2πσ

exp

(
−(z − µ)2

2σ2

)
The log likelihood for a set of n data is thus:

l =
n∑

i=1

log
1√
2πσ

exp

(
−(zi − µ)2

2σ2

)
In order to find the maximum likelihood solution, we need to
set

∂l

∂θ
= 0

for parameters θ = {µ, σ}
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Maximum Likelihood Solution - Means

l =
n∑

i=1

log
1√
2πσ

exp

(
−(zi − µ)2

2σ2

)

= −n

2
log(2π)− n

2
log(σ2)−

n∑
i=1

(zi − µ)2

2σ2

∂l

∂µ
=

n∑
i=1

zi − µ

σ2
=

n∑
i=1

zi

σ2
−

n∑
i=1

µ

σ2

0 =
n∑

i=1

zi

σ2
− nµ

σ2

=⇒ µ =
1

n

n∑
i=1

zi
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Maximum Likelihood Solution - Variances

l =
n∑

i=1

log
1√
2πσ

exp

(
−(zi − µ)2

2σ2

)

= −n

2
log(2π)− n

2
log(σ2)−

n∑
i=1

(zi − µ)2

2σ2

∂l

∂σ2
= −n

2

1

σ2
+

n∑
i=1

(zi − µ)2

2σ4
= 0

=⇒
n∑

i=1

(zi − µ)2

2σ4
=

n

2σ2

1

n

n∑
i=1

(zi − µ)2 = σ2

Samy Bengio Statistical Machine Learning from Data 18



Histograms, K Nearest Neighbors and Parzen Windows
Maximum Likelihood and Bayes Decision

K-Means
Linear Regression

Maximum Likelihood
Bayes Decision
Naive Bayes Classifiers

Maximum Likelihood Solution - Variances

l =
n∑

i=1

log
1√
2πσ

exp

(
−(zi − µ)2

2σ2

)

= −n

2
log(2π)− n

2
log(σ2)−

n∑
i=1

(zi − µ)2

2σ2

∂l

∂σ2
= −n

2

1

σ2
+

n∑
i=1

(zi − µ)2

2σ4
= 0

=⇒
n∑

i=1

(zi − µ)2

2σ4
=

n

2σ2

1

n

n∑
i=1

(zi − µ)2 = σ2

Samy Bengio Statistical Machine Learning from Data 18



Histograms, K Nearest Neighbors and Parzen Windows
Maximum Likelihood and Bayes Decision

K-Means
Linear Regression

Maximum Likelihood
Bayes Decision
Naive Bayes Classifiers

Maximum Likelihood Solution - Variances

l =
n∑

i=1

log
1√
2πσ

exp

(
−(zi − µ)2

2σ2

)

= −n

2
log(2π)− n

2
log(σ2)−

n∑
i=1

(zi − µ)2

2σ2

∂l

∂σ2
= −n

2

1

σ2
+

n∑
i=1

(zi − µ)2

2σ4
= 0

=⇒
n∑

i=1

(zi − µ)2

2σ4
=

n

2σ2

1

n

n∑
i=1

(zi − µ)2 = σ2

Samy Bengio Statistical Machine Learning from Data 18



Histograms, K Nearest Neighbors and Parzen Windows
Maximum Likelihood and Bayes Decision

K-Means
Linear Regression

Maximum Likelihood
Bayes Decision
Naive Bayes Classifiers

Maximum Likelihood Solution - Variances

l =
n∑

i=1

log
1√
2πσ

exp

(
−(zi − µ)2

2σ2

)

= −n

2
log(2π)− n

2
log(σ2)−

n∑
i=1

(zi − µ)2

2σ2

∂l

∂σ2
= −n

2

1

σ2
+

n∑
i=1

(zi − µ)2

2σ4
= 0

=⇒
n∑

i=1

(zi − µ)2

2σ4
=

n

2σ2

1

n

n∑
i=1

(zi − µ)2 = σ2

Samy Bengio Statistical Machine Learning from Data 18



Histograms, K Nearest Neighbors and Parzen Windows
Maximum Likelihood and Bayes Decision

K-Means
Linear Regression

Maximum Likelihood
Bayes Decision
Naive Bayes Classifiers

Maximum Likelihood Solution - Variances

l =
n∑

i=1

log
1√
2πσ

exp

(
−(zi − µ)2

2σ2

)

= −n

2
log(2π)− n

2
log(σ2)−

n∑
i=1

(zi − µ)2

2σ2

∂l

∂σ2
= −n

2

1

σ2
+

n∑
i=1

(zi − µ)2

2σ4
= 0

=⇒
n∑

i=1

(zi − µ)2

2σ4
=

n

2σ2

1

n

n∑
i=1

(zi − µ)2 = σ2

Samy Bengio Statistical Machine Learning from Data 18



Histograms, K Nearest Neighbors and Parzen Windows
Maximum Likelihood and Bayes Decision

K-Means
Linear Regression

Maximum Likelihood
Bayes Decision
Naive Bayes Classifiers

Bayes Decision

Classification: z = (x , y) ∈ Rd × {−1, 1}
Given: true posterior distribution P(Y = y |X = x)

It can be shown that the decision

ŷ = arg max
i∈{1,−1}

P(Y = i |X = x)

is optimal in the sense that it minimizes the number of
classification errors.

This decision corresponds to the class maximum a posteriori
(MAP) criterion
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Why Class MAP Minimizes Error?

ŷ = arg max
i∈{1,−1}

P(Y = i |X = x)

= arg max
i∈{1,−1}

p(X = x |Y = i) · P(Y = i)

p(X = x)

= arg max
i∈{1,−1}

p(X = x |Y = i) · P(Y = i)

= arg max
i∈{1,−1}

p(X = x ,Y = i)
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Why Class MAP Minimizes Error?

Let us select a threshold for all our decisions X = τ .

X

p(X=x,Y = 1)

τ

p(X=x,Y = −1)
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Why Class MAP Minimizes Error?

The ratio of errors we make can be decomposed into two
terms:

when X > τ but Y = −1

= p(X > τ, Y = −1) =

∫
x>τ

p(X = x ,Y = −1)dx

when X < τ but Y = 1

= p(X < τ, Y = 1) =

∫
x<τ

p(X = x ,Y = 1)dx

Which τ corresponds to the minimum error?

τ? = arg min
τ

p(X > τ, Y = −1) + p(X < τ, Y = 1)

which happens exactly when

p(X = τ,Y = −1) = p(X = τ,Y = 1)
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Bayes Classifiers

Goal: take the decision based on the MAP criterion:

ŷ = arg max
i∈{1,−1}

p(X = x |Y = i) · P(Y = i)

Hence, you need to estimate:

the conditional density p(X = x |Y = i) for each class i
the class prior P(Y = i) for each class i

Good: each class is estimated independently

Bad: you learn unnecessary relations

This technique is nevertheless often used in speech processing

Samy Bengio Statistical Machine Learning from Data 23



Histograms, K Nearest Neighbors and Parzen Windows
Maximum Likelihood and Bayes Decision

K-Means
Linear Regression

Maximum Likelihood
Bayes Decision
Naive Bayes Classifiers

Naive Bayes Classifiers

Classification decision according to a Bayes Classifier:

ŷ = arg max
i∈{1,−1}

p(X = x |Y = i) · P(Y = i)

P(Y = i) can be estimated by counting in the training set.
We need a way to represent p(X = x |Y = i).
Let us suppose that X ∈ Rd AND all Xj are independent...
Hence, the Naive Bayes model assumes:

p(X = x |Y = i) = p(X1 = x1, . . . ,Xd = xd |Y = i) =
d∏

j=1

p(Xj = xj |Y = i)

So, the Naive Bayes Classifier becomes:

ŷ = arg max
i∈{1,−1}

P(Y = i) ·
d∏

j=1

p(Xj = xj |Y = i)
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Clustering by K-Means

Given a set of examples Dn = {z1, z2, · · · , zn}
Search for K prototypes µk of disjoint subsets Sk of Dn in
order to minimize

L =
K∑

k=1

∑
j∈Sk

‖zj − µk‖2

where µk is the mean of the examples in subset Sk :

µk =
1

|Sk |
∑
j∈Sk

zj

We could use any distance, not just the Euclidean distance...
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Batch and Stochastic K-Means

Initialization: select randomly K examples zj in Dn as initial
values of each µk

At each batch iteration:

For each prototype µk , put in the emptied set Sk the examples
of Dn that are closer to µk than to any other µj 6=k .
Re-compute the value of each µk as the average of the
examples in Sk .

The algorithm stops when no prototype moves anymore.

It can be shown that the K-Means criterion will never increase.

A stochastic version of K-Means can also be derived: given a
small η, for each example zj move the nearest µk as follows:

µk = µk + η(zj − µk)

Samy Bengio Statistical Machine Learning from Data 27



Histograms, K Nearest Neighbors and Parzen Windows
Maximum Likelihood and Bayes Decision

K-Means
Linear Regression

Clustering
Convergence

K-Means (Graphical View 1)

A

B

Samy Bengio Statistical Machine Learning from Data 28



Histograms, K Nearest Neighbors and Parzen Windows
Maximum Likelihood and Bayes Decision

K-Means
Linear Regression

Clustering
Convergence

K-Means (Graphical View 2)

A

B

Samy Bengio Statistical Machine Learning from Data 29



Histograms, K Nearest Neighbors and Parzen Windows
Maximum Likelihood and Bayes Decision

K-Means
Linear Regression

Clustering
Convergence

K-Means (Graphical View 3)

A

B

Samy Bengio Statistical Machine Learning from Data 30



Histograms, K Nearest Neighbors and Parzen Windows
Maximum Likelihood and Bayes Decision

K-Means
Linear Regression

Clustering
Convergence

Convergence of K-Means

Let µt be the set of clusters at time t

Let s(zi , µ
t) = arg min

k
‖zi − µt

k‖2 the best cluster in µt for zi .

Let us rewrite L(µt) =
n∑

i=1

‖zi − µt
s(zi ,µt)‖

2

We want to show that

L(µt+1)− L(µt) ≤ 0

Let µt+1
k = 1

|Sk |

∑
i∈Sk

zi with Sk the set of zi assigned to µk

Let Q(µt+1, µt) =
n∑

i=1

‖zi − µt+1
s(zi ,µt)‖

2
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Convergence of K-Means

Let µt be the set of clusters at time t

Let s(zi , µ
t) = arg min

k
‖zi − µt

k‖2 the best cluster in µt for zi .

Let us rewrite L(µt) =
n∑

i=1

‖zi − µt
s(zi ,µt)‖

2

We want to show that

L(µt+1)− L(µt) ≤ 0

Let µt+1
k = 1

|Sk |

∑
i∈Sk

zi with Sk the set of zi assigned to µk

Let Q(µt+1, µt) =
n∑

i=1

‖zi − µt+1
s(zi ,µt)‖

2
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Convergence of K-Means

L(µt+1)− L(µt) = L(µt+1)− Q(µt+1, µt) + Q(µt+1, µt)− L(µt)

L(µt+1)−Q(µt+1, µt) =
n∑

i=1

(
‖zi − µt+1

s(zi ,µt+1)
‖2 − ‖zi − µt+1

s(zi ,µt)‖
2
)
≤ 0

Q(µt+1, µt)−L(µt) =
n∑

i=1

(
‖zi − µt+1

s(zi ,µt)‖
2 − ‖zi − µt

s(zi ,µt)‖
2
)
≤ 0

=⇒

L(µt+1)− L(µt) ≤ 0
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K-Means - Some Remarks

As for KNN, we can change the metric

For instance, we can normalize the data

How to select K ???

Reminder: as for KNN, K controls the capacity...

Hence, we can use a model selection technique

Note: K-Means is quite sensitive to initialization. Other
heuristics exist, or you can retrain many times...

Application: feature extraction

represent each example z by the index of the closest
prototype
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What is Linear Regression?
Solving Linear Regression

1 Histograms, K Nearest Neighbors and Parzen Windows

2 Maximum Likelihood and Bayes Decision

3 K-Means

4 Linear Regression
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What is Linear Regression?
Solving Linear Regression

Linear Regression

We have a set of training examples Dn = {z1, z2, · · · , zn}
With zi = (xi , yi ) ∈ Rd × R
Linear function space: ŷ = w · x + b with parameters (w , b)

Loss function: L(y , ŷ) = (y − ŷ)2
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What is Linear Regression?
Solving Linear Regression

Solving Linear Regression

The total error is as follows:

C =
∑

i

L(y , ŷ)

=
∑

i

(yi − ŷi )
2

=
∑

i

(y − w · xi − b)2

We need to set simultaneously
∂C

∂w
and

∂C

∂b
to 0.

For easier mathematical derivation −→ matrix notation
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What is Linear Regression?
Solving Linear Regression

Solving Linear Regression by Matrix Inversion

Let ri = [xi 1] the input vector of example i augmented by
the value 1.

Let R be the (n × (d + 1)) matrix of vectors ri .

Let Y be the (n × 1) target matrix.

Let v = [w b] be the (d + 1)-dim vector concatenating w
and b.

The total cost is:

C =
n∑

i=1

(yi − ŷi )
2

=
n∑

i=1

(y − (w · xi + b · 1))2

= (Y − Rv)′(Y − Rv)
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Solving Linear Regression

Solution of the Linear Regression Problem

The cost:
C = (Y − Rv)′(Y − Rv)

Its minimum should satisfy:

∂C

∂v
= 0

Let us solve:

∂C

∂v
= −2R ′(Y − Rv) = 0

Hence: v̂ = (R ′R)−1R ′Y
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