Statistical Machine Learning from Data Classical Models

Samy Bengio

IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland bengio@idiap.ch http://www.idiap.ch/~bengio

February 8, 2006

2 Maximum Likelihood and Bayes Decision

3 K-Means

Parametric or Not?

- The space \mathcal{F} is often characterized to be parametric or not.
- Parametric: the space is very small, and characterized by a small number of parameters.
 - examples: a Gaussian distribution or a linear function
 - big prior on the solution
- Non-Parametric: the space is infinite, constrained only by the training data
 - examples: K nearest neighbors, Parzen Windows
 - small prior on the solution
- Semi-Parametric:
 - examples: most machine learning algorithms!
 - small prior on the solution, characterized by a large number of parameters

Histograms < Nearest Neighbors Parzen Windows

1 Histograms, K Nearest Neighbors and Parzen Windows

2 Maximum Likelihood and Bayes Decision

3 K-Means

4 Linear Regression

Histograms K Nearest Neighbors Parzen Windows

Histograms - Example

- For classification or regression: z = (x, y)
- Let x be a k-dimensional vector
- For each dimension *d*, divide the possible values *x_d* into *m_d* bins
- Example, for 14 training examples of input dimension 2:

	<i>x</i> ₁ < 5	$5 \le x_1 < 7$	$7 \le x_1$
$x_2 = red$	y(0) = -3 y(1) = -4 y(2) = -2.8	y(3) = 2 y(4) = 1	y(5) = 3 y(6) = 4 y(7) = 2.8 y(8) = 2.5
$x_2 = blue$	y(9) = -4.5 y(10) = -4	y(11) = 0.1	y(12) = 0.1 y(13) = 0.65

Histograms K Nearest Neighbors Parzen Windows

Histograms - Training

Model: compute average value (on the training set) of ŷ corresponding to each bin:

	<i>x</i> ₁ < 5	$5 \le x_1 < 7$	$7 \leq x_1$
$x_2 = \text{red}$	$\hat{y} = -3.3$	$\hat{y} = 1.5$	$\hat{y} = 3.1$
$x_2 = blue$	$\hat{y} = 4.25$	$\hat{y} = 0.1$	$\hat{y} = 0.38$

- Test: given a new example x, select the corresponding bin and output the associated ŷ
- Can be extended to classification.
- Capacity controlled by the total number of bins.

• Total number of bins
$$= \prod_{d=1}^{k} m_d$$

Histograms K Nearest Neighbors Parzen Windows

Problem: The Curse of Dimensionality (1)

Combinatorial Explosion

- What happens when the number of input dimensions grows?
- The number of bins grows exponentially faster!
- Most bins will get no representative training example
- How can we estimate a new example that is in one of those bins????
- In fact, even the bins with some training examples are probably not correctly estimated...

Histograms K Nearest Neighbors Parzen Windows

K Nearest Neighbors

- Very simple method, no training necessary
- Needed:
 - a training set $D_n = \{z_1, z_2, \cdots, z_n\}$ with $z_i = (x_i, y_i)$
 - a distance function $L(x_1, x_2)$. For instance, $(x_1 x_2)^2$
 - a parameter K
- For each test point x
 - select in D_n the K examples that are nearest to x according to $L(x, x_i)$ and keep their index (from D_n) in $\{s_1, \dots, s_K\}$
 - decision:

• regression:
$$\hat{y} = \frac{1}{K} \sum_{i=1}^{K} y_{s_i}$$

• classification: $\hat{y} = \text{sign}\left(\frac{1}{K} \sum_{i=1}^{K} y_{s_i}\right)$

• Capacity controlled by K.

Histograms, K Nearest Neighbors and Parzen Windows

Maximum Likelihood and Bayes Decision K-Means Linear Regression Histograms K Nearest Neighbors Parzen Windows

K-NN (Graphical View)

Histograms K Nearest Neighbors Parzen Windows

KNN - Some Remarks

- What does it mean to be nearest to an example?
- Often used metric: Euclidean distance, or *I*²-norm

$$d = \sqrt{\sum_i (x_i - t_i)^2}$$

- For KNN, $\sqrt{\cdot}$ is not necessary
- How to select K ???
- Reminder: K controls the capacity...
- Hence, we can use a model selection technique

Histograms K Nearest Neighbors Parzen Windows

Distances and the Curse of Dimensionality

• Consider a regular grid of *b* bins per dimension in a *d*-dim hypercube.

• How many bins are not on the surface of the hypercube? consider uniform data.

$$\left(\frac{b-2}{b}\right)^d \text{ chances of being in the center. } \longrightarrow 0$$

- When d is high, all data lie on the surface!
- How many points of the training set can be on the same surface? As *d* grows, less than one on average!
- Each point is thus far from all the others...
- Hence, all methods based on Euclidean distance are bound to work on small dimensions only.

Histograms, K Nearest Neighbors and Parzen Windows

Maximum Likelihood and Bayes Decision K-Means Linear Regression Histograms K Nearest Neighbors Parzen Windows

KNN versus Parzen Windows

Histograms K Nearest Neighbors Parzen Windows

Parzen Windows

- Very simple method, no training necessary
- Needed:
 - a training set $D_n = \{z_1, z_2, \cdots, z_n\}$ with $z_i = (x_i, y_i)$
 - a kernel function $K(x_1, x_2)$. For instance, $\exp(-\frac{||x_1-x_2||^2}{2\sigma^2})$
- For each test point x (or z for density estimate)

• decision:

• regression:
$$\hat{y}_r = \frac{\sum_{i=1}^n y_i K(x, x_i)}{\sum_{i=1}^n K(x, x_i)}$$

• classification: $\hat{y} = \text{sign}(\hat{y}_r)$
• density estimate: $\hat{p}(z) = \frac{1}{n} \sum_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} K(x, x_i)$

• Capacity controlled by σ

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

I) Histograms, K Nearest Neighbors and Parzen Windows

2 Maximum Likelihood and Bayes Decision

3 K-Means

4 Linear Regression

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

Maximum Likelihood for Density Estimation

- Given a set of examples $D_n = \{z_1, z_2, \cdots, z_n\}$
- Objective: find a distribution p(z) that maximizes the likelihood of future data
- Select a set of distributions $p(z|\theta)$ with parameters θ .
- The likelihood of D_n (all examples are iid):

$$\mathcal{L}(D_n| heta) = \prod_{i=1}^n p(z_i| heta)$$

Hence we search for:

$$\theta^* = \arg \max_{\theta} \prod_{i=1}^n p(z_i | \theta) = \arg \max_{\theta} \sum_{i=1}^n \log p(z_i | \theta)$$

going into the log domain.

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

Maximum Likelihood for Gaussians

• Family of one-dimensional Gaussians with $\theta = \{\mu, \sigma\}$

$$\hat{p}(z|\theta) = rac{1}{\sqrt{2\pi\sigma}} \exp\left(-rac{(z-\mu)^2}{2\sigma^2}
ight)$$

• The log likelihood for a set of *n* data is thus:

$$I = \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(z_i - \mu)^2}{2\sigma^2}\right)$$

 In order to find the maximum likelihood solution, we need to set

$$\frac{\partial I}{\partial \theta} = 0$$

for parameters $\boldsymbol{\theta} = \{\boldsymbol{\mu}, \boldsymbol{\sigma}\}$

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

$$I = \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(z_i - \mu)^2}{2\sigma^2}\right)$$
$$= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \sum_{i=1}^{n} \frac{(z_i - \mu)^2}{2\sigma^2}$$
$$\frac{\partial I}{\partial \mu} = \sum_{i=1}^{n} \frac{z_i - \mu}{\sigma^2} = \sum_{i=1}^{n} \frac{z_i}{\sigma^2} - \sum_{i=1}^{n} \frac{\mu}{\sigma^2}$$
$$0 = \sum_{i=1}^{n} \frac{z_i}{\sigma^2} - \frac{n\mu}{\sigma^2}$$

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

$$I = \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(z_i - \mu)^2}{2\sigma^2}\right)$$

= $-\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \sum_{i=1}^{n} \frac{(z_i - \mu)^2}{2\sigma^2}$

$$\frac{\partial I}{\partial \mu} = \sum_{i=1}^{n} \frac{z_i - \mu}{\sigma^2} = \sum_{i=1}^{n} \frac{z_i}{\sigma^2} - \sum_{i=1}^{n} \frac{\mu}{\sigma^2}$$
$$0 = \sum_{i=1}^{n} \frac{z_i}{\sigma^2} - \frac{n\mu}{\sigma^2}$$

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

$$\begin{aligned} H &= \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(z_i - \mu)^2}{2\sigma^2}\right) \\ &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \sum_{i=1}^{n} \frac{(z_i - \mu)^2}{2\sigma^2} \\ &\frac{\partial I}{\partial \mu} = \sum_{i=1}^{n} \frac{z_i - \mu}{\sigma^2} = \sum_{i=1}^{n} \frac{z_i}{\sigma^2} - \sum_{i=1}^{n} \frac{\mu}{\sigma^2} \\ &0 = \sum_{i=1}^{n} \frac{z_i}{\sigma^2} - \frac{n\mu}{\sigma^2} \\ &\implies \mu = \frac{1}{n} \sum_{i=1}^{n} z_i \end{aligned}$$

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

$$= \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(z_i - \mu)^2}{2\sigma^2}\right)$$
$$= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \sum_{i=1}^{n} \frac{(z_i - \mu)^2}{2\sigma^2}$$

$$\frac{\partial I}{\partial \mu} = \sum_{i=1}^{n} \frac{z_i - \mu}{\sigma^2} = \sum_{i=1}^{n} \frac{z_i}{\sigma^2} - \sum_{i=1}^{n} \frac{\mu}{\sigma^2}$$
$$0 = \sum_{i=1}^{n} \frac{z_i}{\sigma^2} - \frac{n\mu}{\sigma^2}$$

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

$$= \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(z_i - \mu)^2}{2\sigma^2}\right)$$

$$= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \sum_{i=1}^{n} \frac{(z_i - \mu)^2}{2\sigma^2}$$

$$\frac{\partial I}{\partial \mu} = \sum_{i=1}^{n} \frac{z_i - \mu}{\sigma^2} = \sum_{i=1}^{n} \frac{z_i}{\sigma^2} - \sum_{i=1}^{n} \frac{\mu}{\sigma^2}$$
$$0 = \sum_{i=1}^{n} \frac{z_i}{\sigma^2} - \frac{n\mu}{\sigma^2}$$

$$\implies \mu = \frac{1}{n} \sum_{i=1}^{n} z_i$$

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

$$I = \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(z_i - \mu)^2}{2\sigma^2}\right)$$
$$= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \sum_{i=1}^{n} \frac{(z_i - \mu)^2}{2\sigma^2}$$
$$\frac{\partial I}{\partial \sigma^2} = -\frac{n}{2} \frac{1}{\sigma^2} + \sum_{i=1}^{n} \frac{(z_i - \mu)^2}{2\sigma^4} = 0$$
$$\implies \sum_{i=1}^{n} \frac{(z_i - \mu)^2}{2\sigma^4} = \frac{n}{2\sigma^2}$$
$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (z_i - \mu)^2 = \sigma^2$$

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

$$I = \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(z_{i}-\mu)^{2}}{2\sigma^{2}}\right)$$

= $-\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^{2}) - \sum_{i=1}^{n} \frac{(z_{i}-\mu)^{2}}{2\sigma^{2}}$
 $\frac{\partial I}{\partial \sigma^{2}} = -\frac{n}{2} \frac{1}{\sigma^{2}} + \sum_{i=1}^{n} \frac{(z_{i}-\mu)^{2}}{2\sigma^{4}} = 0$
 $\implies \sum_{i=1}^{n} \frac{(z_{i}-\mu)^{2}}{2\sigma^{4}} = \frac{n}{2\sigma^{2}}$
 $\frac{1}{n} \sum_{i=1}^{n} (z_{i}-\mu)^{2} = \sigma^{2}$

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

$$I = \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(z_{i}-\mu)^{2}}{2\sigma^{2}}\right)$$

= $-\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^{2}) - \sum_{i=1}^{n} \frac{(z_{i}-\mu)^{2}}{2\sigma^{2}}$
 $\frac{\partial l}{\partial \sigma^{2}} = -\frac{n}{2} \frac{1}{\sigma^{2}} + \sum_{i=1}^{n} \frac{(z_{i}-\mu)^{2}}{2\sigma^{4}} = 0$
 $\implies \sum_{i=1}^{n} \frac{(z_{i}-\mu)^{2}}{2\sigma^{4}} = \frac{n}{2\sigma^{2}}$
 $\frac{1}{n} \sum_{i=1}^{n} (z_{i}-\mu)^{2} = \sigma^{2}$

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

$$I = \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(z_{i}-\mu)^{2}}{2\sigma^{2}}\right)$$

= $-\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^{2}) - \sum_{i=1}^{n} \frac{(z_{i}-\mu)^{2}}{2\sigma^{2}}$
 $\frac{\partial l}{\partial \sigma^{2}} = -\frac{n}{2} \frac{1}{\sigma^{2}} + \sum_{i=1}^{n} \frac{(z_{i}-\mu)^{2}}{2\sigma^{4}} = 0$
 $\implies \sum_{i=1}^{n} \frac{(z_{i}-\mu)^{2}}{2\sigma^{4}} = \frac{n}{2\sigma^{2}}$
 $\frac{1}{n} \sum_{i=1}^{n} (z_{i}-\mu)^{2} = \sigma^{2}$

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

$$I = \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(z_i - \mu)^2}{2\sigma^2}\right)$$

= $-\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \sum_{i=1}^{n} \frac{(z_i - \mu)^2}{2\sigma^2}$
 $\frac{\partial I}{\partial \sigma^2} = -\frac{n}{2} \frac{1}{\sigma^2} + \sum_{i=1}^{n} \frac{(z_i - \mu)^2}{2\sigma^4} = 0$
 $\implies \sum_{i=1}^{n} \frac{(z_i - \mu)^2}{2\sigma^4} = \frac{n}{2\sigma^2}$
 $\frac{1}{n} \sum_{i=1}^{n} (z_i - \mu)^2 = \sigma^2$

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

Bayes Decision

- Classification: $z = (x, y) \in \mathbb{R}^d \times \{-1, 1\}$
- Given: true posterior distribution P(Y = y | X = x)
- It can be shown that the decision

$$\hat{y} = \arg \max_{i \in \{1,-1\}} P(Y = i | X = x)$$

is optimal in the sense that it minimizes the number of classification errors.

• This decision corresponds to the class maximum a posteriori (MAP) criterion

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

Why Class MAP Minimizes Error?

$$\hat{y} = \arg \max_{i \in \{1, -1\}} P(Y = i | X = x)$$

=
$$\arg \max_{i \in \{1, -1\}} \frac{p(X = x | Y = i) \cdot P(Y = i)}{p(X = x)}$$

=
$$\arg \max_{i \in \{1, -1\}} p(X = x | Y = i) \cdot P(Y = i)$$

=
$$\arg \max_{i \in \{1, -1\}} p(X = x, Y = i)$$

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

Why Class MAP Minimizes Error?

• Let us select a threshold for all our decisions $X = \tau$.

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

Why Class MAP Minimizes Error?

- The ratio of errors we make can be decomposed into two terms:
 - when $X > \tau$ but Y = -1

$$= p(X > \tau, Y = -1) = \int_{x > \tau} p(X = x, Y = -1) dx$$

• when $X < \tau$ but Y = 1

$$= p(X < \tau, Y = 1) = \int_{x < \tau} p(X = x, Y = 1) dx$$

• Which τ corresponds to the minimum error?

$$au^{\star} = rg\min_{ au} p(X > au, Y = -1) + p(X < au, Y = 1)$$

which happens exactly when

$$p(X=\tau,Y=-1)=p(X=\tau,Y=1)$$

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

Bayes Classifiers

• Goal: take the decision based on the MAP criterion:

$$\hat{y} = \arg \max_{i \in \{1,-1\}} p(X = x | Y = i) \cdot P(Y = i)$$

- Hence, you need to estimate:
 - the conditional density p(X = x | Y = i) for each class *i*
 - the class prior P(Y = i) for each class *i*
- Good: each class is estimated independently
- Bad: you learn unnecessary relations
- This technique is nevertheless often used in speech processing

Maximum Likelihood Bayes Decision Naive Bayes Classifiers

Naive Bayes Classifiers

• Classification decision according to a Bayes Classifier:

$$\hat{y} = \arg \max_{i \in \{1,-1\}} p(X = x | Y = i) \cdot P(Y = i)$$

- P(Y = i) can be estimated by counting in the training set.
- We need a way to represent p(X = x | Y = i).
- Let us suppose that $X \in \mathbb{R}^d$ AND all X_i are independent...
- Hence, the Naive Bayes model assumes:

$$p(X = x | Y = i) = p(X_1 = x_1, ..., X_d = x_d | Y = i) = \prod_{j=1}^d p(X_j = x_j | Y = i)$$

• So, the Naive Bayes Classifier becomes:

$$\hat{y} = \arg \max_{i \in \{1,-1\}} P(Y = i) \cdot \prod_{j=1}^{d} p(X_j = x_j | Y = i)$$

Clustering Convergence

Histograms, K Nearest Neighbors and Parzen Windows

2 Maximum Likelihood and Bayes Decision

3 K-Means

Clustering Convergence

Clustering by K-Means

- Given a set of examples $D_n = \{z_1, z_2, \cdots, z_n\}$
- Search for K prototypes μ_k of disjoint subsets S_k of D_n in order to minimize

$$L = \sum_{k=1}^{K} \sum_{j \in S_k} \|z_j - \mu_k\|^2$$

where μ_k is the mean of the examples in subset S_k :

$$\mu_k = rac{1}{|\mathcal{S}_k|} \sum_{j \in \mathcal{S}_k} z_j$$

• We could use any distance, not just the Euclidean distance...

Clustering Convergence

Batch and Stochastic K-Means

- Initialization: select randomly K examples z_j in D_n as initial values of each μ_k
- At each batch iteration:
 - For each prototype μ_k, put in the emptied set S_k the examples of D_n that are closer to μ_k than to any other μ_{j≠k}.
 - Re-compute the value of each μ_k as the average of the examples in S_k.
- The algorithm stops when no prototype moves anymore.
- It can be shown that the K-Means criterion will never increase.
- A stochastic version of K-Means can also be derived: given a small η, for each example z_i move the nearest μ_k as follows:

$$\mu_k = \mu_k + \eta(z_j - \mu_k)$$

Linear Regression

Clustering Convergence

K-Means (Graphical View 1)

Linear Regression

Clustering Convergence

K-Means (Graphical View 2)

Clustering Convergence

K-Means (Graphical View 3)

Clustering Convergence

Convergence of K-Means

- Let μ^t be the set of clusters at time t
- Let $s(z_i, \mu^t) = \arg\min_k ||z_i \mu_k^t||^2$ the best cluster in μ^t for z_i .

• Let us rewrite
$$L(\mu^t) = \sum_{i=1}^n \|z_i - \mu_{s(z_i,\mu^t)}^t\|^2$$

• We want to show that

$$L(\mu^{t+1}) - L(\mu^t) \le 0$$

• Let
$$\mu_k^{t+1} = \frac{1}{|S_k|} \sum_{i \in S_k} z_i$$
 with S_k the set of z_i assigned to μ_k
• Let $Q(\mu^{t+1}, \mu^t) = \sum_{i=1}^n ||z_i - \mu_{s(z_i, \mu^t)}^{t+1}||^2$

Clustering Convergence

Convergence of K-Means

- Let μ^t be the set of clusters at time t
- Let $s(z_i, \mu^t) = \arg\min_k ||z_i \mu_k^t||^2$ the best cluster in μ^t for z_i .

• Let us rewrite
$$L(\mu^t) = \sum_{i=1}^n \|z_i - \mu_{s(z_i,\mu^t)}^t\|^2$$

• We want to show that

$$L(\mu^{t+1}) - L(\mu^t) \le 0$$

• Let
$$\mu_k^{t+1} = \frac{1}{|S_k|} \sum_{i \in S_k} z_i$$
 with S_k the set of z_i assigned to μ_k
• Let $Q(\mu^{t+1}, \mu^t) = \sum_{i=1}^n ||z_i - \mu_{s(z_i, \mu^t)}^{t+1}||^2$

Clustering Convergence

Convergence of K-Means

- Let μ^t be the set of clusters at time t
- Let $s(z_i, \mu^t) = \arg\min_k ||z_i \mu_k^t||^2$ the best cluster in μ^t for z_i .

• Let us rewrite
$$L(\mu^t) = \sum_{i=1}^n \|z_i - \mu_{s(z_i,\mu^t)}^t\|^2$$

• We want to show that

$$L(\mu^{t+1}) - L(\mu^t) \le 0$$

• Let
$$\mu_k^{t+1} = \frac{1}{|S_k|} \sum_{i \in S_k} z_i$$
 with S_k the set of z_i assigned to μ_k
• Let $Q(\mu^{t+1}, \mu^t) = \sum_{i=1}^n ||z_i - \mu_{s(z_i, \mu^t)}^{t+1}||^2$

Clustering Convergence

Convergence of K-Means

$$L(\mu^{t+1}) - L(\mu^{t}) = L(\mu^{t+1}) - Q(\mu^{t+1}, \mu^{t}) + Q(\mu^{t+1}, \mu^{t}) - L(\mu^{t})$$

$$L(\mu^{t+1}) - Q(\mu^{t+1}, \mu^{t}) = \sum_{i=1}^{n} \left(\|z_{i} - \mu_{s(z_{i}, \mu^{t+1})}^{t+1}\|^{2} - \|z_{i} - \mu_{s(z_{i}, \mu^{t})}^{t+1}\|^{2} \right) \le 0$$
$$Q(\mu^{t+1}, \mu^{t}) - L(\mu^{t}) = \sum_{i=1}^{n} \left(\|z_{i} - \mu_{s(z_{i}, \mu^{t})}^{t+1}\|^{2} - \|z_{i} - \mu_{s(z_{i}, \mu^{t})}^{t}\|^{2} \right) \le 0$$

 $L(\mu^{t+1}) - L(\mu^t) \le 0$

Clustering Convergence

Convergence of K-Means

$$L(\mu^{t+1}) - L(\mu^{t}) = L(\mu^{t+1}) - Q(\mu^{t+1}, \mu^{t}) + Q(\mu^{t+1}, \mu^{t}) - L(\mu^{t})$$

$$L(\mu^{t+1}) - Q(\mu^{t+1}, \mu^{t}) = \sum_{i=1}^{n} \left(\|z_{i} - \mu^{t+1}_{s(z_{i}, \mu^{t+1})}\|^{2} - \|z_{i} - \mu^{t+1}_{s(z_{i}, \mu^{t})}\|^{2} \right) \leq 0$$

$$Q(\mu^{t+1},\mu^t) - L(\mu^t) = \sum_{i=1}^n \left(\|z_i - \mu^{t+1}_{s(z_i,\mu^t)}\|^2 - \|z_i - \mu^t_{s(z_i,\mu^t)}\|^2 \right) \le 0$$

 $L(\mu^{t+1}) - L(\mu^t) \le 0$

Clustering Convergence

Convergence of K-Means

$$L(\mu^{t+1}) - L(\mu^{t}) = L(\mu^{t+1}) - Q(\mu^{t+1}, \mu^{t}) + Q(\mu^{t+1}, \mu^{t}) - L(\mu^{t})$$

$$L(\mu^{t+1}) - Q(\mu^{t+1}, \mu^{t}) = \sum_{i=1}^{n} \left(\|z_i - \mu^{t+1}_{s(z_i, \mu^{t+1})}\|^2 - \|z_i - \mu^{t+1}_{s(z_i, \mu^{t})}\|^2 \right) \le 0$$

$$Q(\mu^{t+1},\mu^{t})-L(\mu^{t})=\sum_{i=1}^{n}\left(\|z_{i}-\mu^{t+1}_{s(z_{i},\mu^{t})}\|^{2}-\|z_{i}-\mu^{t}_{s(z_{i},\mu^{t})}\|^{2}\right)\leq 0$$

 $L(\mu^{t+1}) - L(\mu^t) \le 0$

Clustering Convergence

Convergence of K-Means

 \implies

$$L(\mu^{t+1}) - L(\mu^{t}) = L(\mu^{t+1}) - Q(\mu^{t+1}, \mu^{t}) + Q(\mu^{t+1}, \mu^{t}) - L(\mu^{t})$$

$$L(\mu^{t+1}) - Q(\mu^{t+1}, \mu^{t}) = \sum_{i=1}^{n} \left(\|z_i - \mu^{t+1}_{s(z_i, \mu^{t+1})}\|^2 - \|z_i - \mu^{t+1}_{s(z_i, \mu^{t})}\|^2 \right) \le 0$$

$$Q(\mu^{t+1},\mu^{t})-L(\mu^{t})=\sum_{i=1}^{n}\left(\|z_{i}-\mu^{t+1}_{s(z_{i},\mu^{t})}\|^{2}-\|z_{i}-\mu^{t}_{s(z_{i},\mu^{t})}\|^{2}\right)\leq 0$$

$$L(\mu^{t+1}) - L(\mu^t) \le 0$$

Clustering Convergence

K-Means - Some Remarks

- As for KNN, we can change the metric
- For instance, we can normalize the data
- How to select K ???
- Reminder: as for KNN, K controls the capacity...
- Hence, we can use a model selection technique

Linear Regression

- Note: K-Means is quite sensitive to initialization. Other heuristics exist, or you can retrain many times...
- Application: feature extraction

represent each example *z* by the index of the closest prototype

What is Linear Regression? Solving Linear Regression

- Histograms, K Nearest Neighbors and Parzen Windows
- 2 Maximum Likelihood and Bayes Decision

3 K-Means

4 Linear Regression

What is Linear Regression? Solving Linear Regression

Linear Regression

- We have a set of training examples $D_n = \{z_1, z_2, \cdots, z_n\}$
- With $z_i = (x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$
- Linear function space: $\hat{y} = w \cdot x + b$ with parameters (w, b)
- Loss function: $L(y, \hat{y}) = (y \hat{y})^2$

What is Linear Regression? Solving Linear Regression

Solving Linear Regression

• The total error is as follows:

$$C = \sum_{i} L(y, \hat{y})$$

=
$$\sum_{i} (y_i - \hat{y}_i)^2$$

=
$$\sum_{i} (y - w \cdot x_i - b)^2$$

- We need to set simultaneously $\frac{\partial C}{\partial w}$ and $\frac{\partial C}{\partial b}$ to 0.
- \bullet For easier mathematical derivation \longrightarrow matrix notation

Solving Linear Regression by Matrix Inversion

- Let $r_i = [x_i \ 1]$ the input vector of example *i* augmented by the value 1.
- Let R be the $(n \times (d + 1))$ matrix of vectors r_i .
- Let Y be the $(n \times 1)$ target matrix.
- Let $v = [w \ b]$ be the (d + 1)-dim vector concatenating w and b.
- The total cost is:

$$C = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

=
$$\sum_{i=1}^{n} (y - (w \cdot x_i + b \cdot 1))^2$$

=
$$(Y - Rv)'(Y - Rv)$$

What is Linear Regression? Solving Linear Regression

Solution of the Linear Regression Problem

• The cost:

$$C = (Y - Rv)'(Y - Rv)$$

• Its minimum should satisfy:

$$\frac{\partial C}{\partial v} = 0$$

Let us solve:

$$\frac{\partial C}{\partial v} = -2R'(Y - Rv) = 0$$

Hence: $\hat{v} = (R'R)^{-1}R'Y$