Statistical Machine Learning from Data Other Artificial Neural Networks

Samy Bengio

IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland bengio@idiap.ch http://www.idiap.ch/~bengio

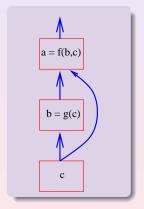
January 17, 2006

1 Radial Basis Functions

- 2 Recurrent Neural Networks
- 3 Auto Associative Networks
- Mixtures of Experts
- **5** TDNNs and LeNet

Generic Gradient Descent Mechanism

- if a = f(b, c; θ_f) is differentiable and b = g(c; θ_g) is differentiable
- then you should be able to compute the gradient with respect to
 a, b, c, θ_f, θ_g...
- Hence only your imagination prevents you from inventing another neural network machine!



Radial Basis Functions

Recurrent Neural Networks Auto Associative Networks Mixtures of Experts TDNNs and LeNet

Introduction Gradient Descent

1 Radial Basis Functions

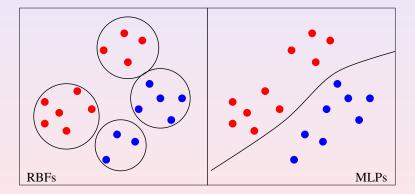
- 2 Recurrent Neural Networks
- 3 Auto Associative Networks
- 4 Mixtures of Experts
- 5 TDNNs and LeNet

Radial Basis Functions

Recurrent Neural Networks Auto Associative Networks Mixtures of Experts TDNNs and LeNet

Introduction Gradient Descen

Difference Between RBFs and MLPs



Introduction Gradient Descent

Radial Basis Function (RBF) Models

• Normal MLP but the hidden layer / is encoded as follows:

•
$$s_i^l = -\frac{1}{2} \sum_j (\gamma_{i,j}^l)^2 \cdot (y_j^{l-1} - \mu_{i,j}^l)^2$$

• $y_i^l = \exp(s_i^l)$

- The parameters of such layer *I* are $\theta_I = \{\gamma_{i,j}^I, \mu_{i,j}^I : \forall i, j\}$
- These layers are useful to extract local features (whereas tanh layers extract global features)

Radial Basis Functions

Recurrent Neural Networks Auto Associative Networks Mixtures of Experts TDNNs and LeNet

Introduction Gradient Descent

Gradient Descent for RBFs

•
$$s_i^{l} = -\frac{1}{2} \sum_{j} (\gamma_{i,j}^{l})^2 \cdot (y_j^{l-1} - \mu_{i,j}^{l})^2$$

• $y_i^{l} = \exp(s_i^{l})$

•
$$\frac{\partial y_i^l}{\partial s_i^l} = \exp(s_i^l) = y_i^l$$

•
$$\frac{\partial s_i^l}{\partial y_j^{l-1}} = -(\gamma_{i,j}^l)^2 \cdot (y_j^{l-1} - \mu_{i,j}^l)$$

•
$$\frac{\partial s_i^l}{\partial \mu_{i,j}^l} = (\gamma_{i,j}^l)^2 \cdot (y_j^{l-1} - \mu_{i,j}^l)$$

•
$$\frac{\partial s_i^l}{\partial \gamma_{i,j}^l} = -\gamma_{i,j}^l \cdot (y_j^{l-1} - \mu_{i,j}^l)^2$$

Introduction Gradient Descent

Warning with Variances

- Initialization: use K-Means for instance
- $\bullet\,$ One has to be very careful with learning γ by gradient descent
- Remember:

$$y'_{i} = \exp\left(-rac{1}{2}\sum_{j}(\gamma'_{i,j})^{2}\cdot(y'_{j}^{l-1}-\mu'_{i,j})^{2}
ight)$$

- If γ becomes too high, the RBF output can explode!
- One solution: constrain them in a reasonable range
- Otherwise, do not train them (keep the K-Means estimate for γ)

Introduction Gradient Descent Long Term Dependencies

Radial Basis Functions

- 2 Recurrent Neural Networks
- 3 Auto Associative Networks
- 4 Mixtures of Experts
- 5 TDNNs and LeNet

Introduction Gradient Descent Long Term Dependencies

Recurrent Neural Networks

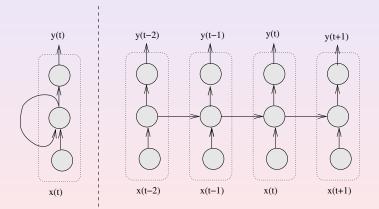
- Such models admit layers / with integration functions
 - $s'_i = f(y'^{i+k}_i)$ where $k \ge 0$, hence loops, or recurrences
- Such layers / encode the notion of a temporal state
- Useful to search for relations in temporal data
- Do not need to specify the exact delay in the relation
- In order to compute the gradient, one must enfold in time all the relations between the data:

$$s_i^l(t)=f(y_j^{l+k}(t-1))$$
 where $k\geq 0$

- Hence, need to exhibit the whole time-dependent graph between input sequence and output sequence
- Caveat: it can be shown that the gradient vanishes exponentially fast through time

Introduction Gradient Descent Long Term Dependencies

Recurrent NNs (Graphical View)



Introduction Gradient Descent Long Term Dependencies

Recurrent NNs - Example of Derivation

• Consider the following simple recurrent neural network:

$$h_t = tanh(d \cdot h_{t-1} + w \cdot x_t + b)$$

$$\hat{y}_t = \mathbf{v} \cdot \mathbf{h}_t + \mathbf{c}$$

with $\{d, w, b, v, c\}$ the set of parameters

• Cost to minimize (for one sequence):

$$C = \sum_{t=1}^{T} C_t = \sum_{t=1}^{T} \frac{1}{2} (y_t - \hat{y}_t)^2$$

Introduction Gradient Descent Long Term Dependencies

Derivation of the Gradient

• We need to derive the following:

$$\frac{\partial C}{\partial d}, \frac{\partial C}{\partial w}, \frac{\partial C}{\partial b}, \frac{\partial C}{\partial v}, \frac{\partial C}{\partial c}$$

• Let us do it for, say, $\frac{\partial C}{\partial w}$.

$$\frac{\partial C}{\partial w} = \sum_{t=1}^{T} \frac{\partial C_t}{\partial w}$$

$$= \sum_{t=1}^{T} \frac{\partial C_t}{\partial \hat{y}_t} \cdot \frac{\partial \hat{y}_t}{\partial w}$$

$$= \sum_{t=1}^{T} \frac{\partial C_t}{\partial \hat{y}_t} \cdot \frac{\partial \hat{y}_t}{\partial h_t} \cdot \frac{\partial h_t}{\partial w}$$

Introduction Gradient Descent Long Term Dependencies

Derivation of the Gradient (2)

$$\frac{\partial C}{\partial w} = \sum_{t=1}^{T} \frac{\partial C_t}{\partial \hat{y}_t} \cdot \frac{\partial \hat{y}_t}{\partial h_t} \cdot \frac{\partial h_t}{\partial w} = \sum_{t=1}^{T} \frac{\partial C_t}{\partial \hat{y}_t} \cdot \frac{\partial \hat{y}_t}{\partial h_t} \cdot \sum_{s=1}^{t} \frac{\partial h_t}{\partial h_s} \cdot \frac{\partial h_s}{\partial w}$$
$$\frac{\partial C_t}{\partial \hat{y}_t} = \hat{y}_t - y_t$$
$$\frac{\partial \hat{y}_t}{\partial h_t} = v$$
$$\frac{\partial h_t}{\partial h_s} = \prod_{i=s+1}^{t} \frac{\partial h_i}{\partial h_{i-1}} = \prod_{i=s+1}^{t} (1 - h_i^2) \cdot d$$
$$\frac{\partial h_s}{\partial w} = (1 - h_s^2) \cdot x_s$$

Introduction Gradient Descent Long Term Dependencies

Long Term Dependencies

• Suppose we want to classify a sequence according to its first frame but the target is known at the end only:

Noise Target Meaningful Input

• Unfortunately, the gradient vanishes:

$$\frac{\partial C_T}{\partial w} = \sum_{t=1}^T \frac{\partial C_T}{\partial h_t} \frac{\partial h_t}{\partial w} \longrightarrow 0$$

• This is because for $t \ll T$

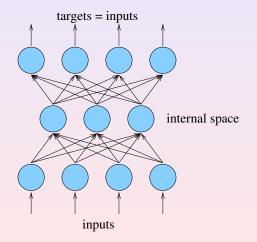
$$\frac{\partial C_T}{\partial h_t} = \frac{\partial C_T}{\partial h_T} \prod_{\tau=t+1}^T \frac{\partial h_\tau}{\partial h_{\tau-1}} \text{ and } \left| \frac{\partial h_\tau}{\partial h_{\tau-1}} \right| < 1$$

Radial Basis Functions

- 2 Recurrent Neural Networks
- 3 Auto Associative Networks
- 4 Mixtures of Experts

5 TDNNs and LeNet

Auto Associative Nets (Graphical View)



Auto Associative Networks

- Apparent objective: learn to reconstruct the input
- In such models, the target vector is the same as the input vector!
- Real objective: learn an internal representation of the data
- If there is one hidden layer of linear units, then after learning, the model implements a principal component analysis with the first *N* principal components (*N* is the number of hidden units).
- If there are non-linearities and more hidden layers, then the system implements a kind of non-linear principal component analysis.

Introduction Gradient Descent

Radial Basis Functions

- 2 Recurrent Neural Networks
- 3 Auto Associative Networks
- Mixtures of Experts
- 5 TDNNs and LeNet

Introduction Gradient Descent

Mixture of Experts

- Let $f_i(x; \theta_{f_i})$ be a differentiable parametric function
- Let there be N such functions f_i .
- Let g(x; θ_g) be a gater: a differentiable function with N positive outputs such that

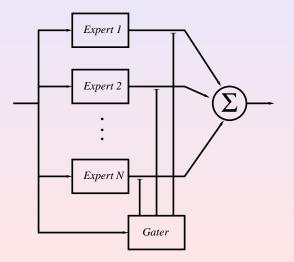
$$\sum_{i=1}^{N} g(x; \theta_g)[i] = 1$$

• Then a mixture of experts is a function $h(x; \theta)$:

$$h(x;\theta) = \sum_{i=1}^{N} g(x;\theta_g)[i] \cdot f_i(x;\theta_{f_i})$$

Introduction Gradient Descent

Mixture of Experts - (Graphical View)



Introduction Gradient Descent

Mixture of Experts - Training

- We can compute the gradient with respect to every parameters:
 - parameters in the expert f_i :

$$\begin{array}{lll} \frac{\partial h(x;\theta)}{\partial \theta_{f_i}} & = & \frac{\partial h(x;\theta)}{\partial f_i(x;\theta_{f_i})} \cdot \frac{\partial f_i(x;\theta_{f_i})}{\partial \theta_{f_i}} \\ & = & g(x;\theta_g)[i] \cdot \frac{\partial f_i(x;\theta_{f_i})}{\partial \theta_{f_i}} \end{array}$$

• parameters in the gater g:

$$\begin{aligned} \frac{\partial h(x;\theta)}{\partial \theta_g} &= \sum_{i=1}^{N} \frac{\partial h(x;\theta)}{\partial g(x;\theta_g)[i]} \cdot \frac{\partial g(x;\theta_g)[i]}{\partial \theta_g} \\ &= \sum_{i=1}^{N} f_i(x;\theta_{f_i}) \cdot \frac{\partial g(x;\theta_g)[i]}{\partial \theta_g} \end{aligned}$$

Introduction Gradient Descent

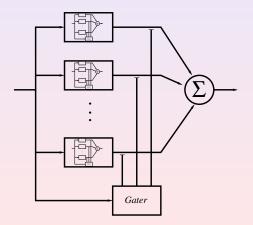
Mixture of Experts - Discussion

- The gater implements a soft partition of the input space (to be compared with, say, K-Means → hard partition)
- Useful when there might be regimes in the data
- Special case: when the experts can be trained by EM, the mixture can also be trained by EM.

Introduction Gradient Descent

Hierarchical Mixture of Experts

When the experts are themselves represented as mixtures of experts:



Time Delay Neural Networks LeNet

Radial Basis Functions

- 2 Recurrent Neural Networks
- 3 Auto Associative Networks
- 4 Mixtures of Experts

5 TDNNs and LeNet

Time Delay Neural Networks LeNet

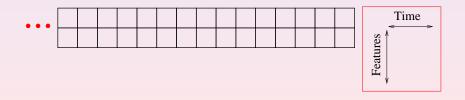
Time Delay Neural Networks (TDNNs)

- TDNNs are models to analyze sequences or time series.
- Hypothesis: some regularities exist over time.
- The same pattern can be seen many times during the same time series (or even over many times series).
- First idea: attribute one hidden unit to model each pattern
 - These hidden units should have associated parameters which are the same over time
 - Hence, the hidden unit associated to a given pattern p_i at time t will share the same parameters as the hidden unit associated to the same pattern p_i at time t + k.
- Note that we are also going to learn what are the patterns!

Time Delay Neural Networks LeNet

TDNNs: Convolutions

- How to formalize this first idea? using a convolution operator.
- This operator can be used not only between the input and the first hidden layer, but between any hidden layers.



Time Delay Neural Networks LeNet

Convolutions: Equations

- Let s^l_{t,i} be the input value at time t of unit i of layer l. Let y^l_{t,i} be the output value at time t of unit i of layer l. (inputs values: y⁰_{t,i} = x_{t,i}). Let w^l_{i,j,k} be the weight between unit i of layer l at any time t and unit j of layer l at time t - k. Let b^l_i be the bias of unit i at layer l.
- Convolution operator for windows of size K:

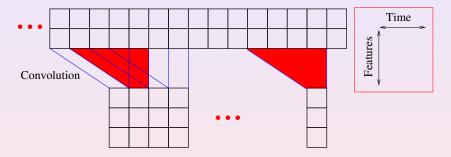
$$s'_{t,i} = \sum_{k=0}^{K-1} \sum_{j} w'_{i,j,k} \cdot y'_{t-k,j} + b'_{i}$$

• Transfer:

$$y_{t,i}^{\prime} = \tanh(s_{t,i}^{\prime})$$

Time Delay Neural Networks LeNet

Convolutions (Graphical View)



- Note: weights $w_{i,i,k}^{l}$ and biases b_{i}^{l} do not depend on time.
- Hence the number of parameters of such model is independent of the length of the time series.
- Each unit $s_{t,i}^{l}$ represents the value of the same function at each time step.

Time Delay Neural Networks LeNet

TDNNs: Subsampling

- The convolution functions always work with a fixed size window (K in our case, which can be different for each unit/layer).
- Some regularities might exist at different granularities.
- Hence, second idea: subsampling (it is more a kind of smoothing operator in fact).
 - In between each convolution layer, let us add a subsampling layer.
 - This subsampling layer provides a way to analyze the time series at a coarser level.

Time Delay Neural Networks LeNet

Subsampling: Equations

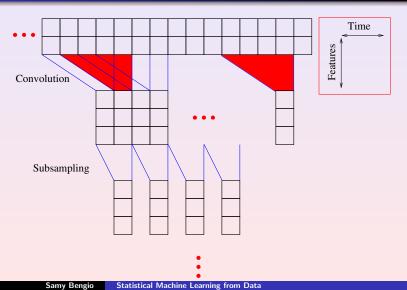
- How to formalize this second idea?
- Let y^l_{t,i} be the output value at time t of unit i of layer l. (inputs values: y⁰_{t,i} = x_{t,i}).
- Let *r* be the ratio of subsampling. This is often set to values such as 2 to 4.
- Subsampling operator:

$$y_{t,i}' = \frac{1}{r} \sum_{k=0}^{r-1} y_{rt-k,i}'^{l-1}$$

- Only compute values $y'_{t,i}$ such that $(t \mod r) = 0$.
- Note: there are no parameter in the subsampling layer (but it is possible to add some, replacing for intance $\frac{1}{r}$ by a parameter and adding a bias term).

Time Delay Neural Networks LeNet

TDNNs (Graphical View)



Time Delay Neural Networks LeNet

Learning in TDNNs

- TDNNs can be trained by normal gradient descent techniques.
- Note that, as for MLPs, each layer is a differentiable function.
- We just need to compute the local gradient:
- Convolution layers:

$$\frac{\partial C}{\partial w_{i,j,k}^{l}} = \sum_{t} \frac{\partial C}{\partial s_{t,i}^{l}} \cdot \frac{\partial s_{t,i}^{l}}{\partial w_{i,j,k}^{l}} = \sum_{t} \frac{\partial C}{\partial s_{t,i}^{l}} \cdot y_{t-k,j}^{l-1}$$

• Subsampling layers:

$$\frac{\partial C}{\partial y_{t-k,i}^{l-1}} = \frac{\partial C}{\partial y_{t,i}^{l}} \cdot \frac{\partial y_{t,i}^{l}}{\partial y_{rt-k,i}^{l-1}} = \frac{\partial C}{\partial y_{t,i}^{l}} \cdot \frac{1}{r}$$

Time Delay Neural Networks LeNet

LeNet for Images

- TDNNs are useful to handle regularities of time series $(\rightarrow 1D \text{ data})$
- Could we use the same trick for images $(\rightarrow 2D \text{ data})$?
- After all, regularities are often visible on images.
- It has indeed been proposed as well, under the name LeNet.

Time Delay Neural Networks LeNet

LeNet (Graphical View)

