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Abstract

This paper presents the theoretical basis and preliminary experimental results of a new HMM model,

referred to as HMM2, which can be considered as a mixture of HMMs. In this new model, the emission

probabilities of the temporal (primary) HMM are estimated through secondary, state specific, HMMs

working in the acoustic feature space. Thus, while the primary HMM is performing the usual time warping

and integration, the secondary HMMs are responsible for extracting/modeling the possible feature de-

pendencies, while performing frequency warping and integration. Such a model has several potential ad-

vantages, such as a more flexible modeling of the time/frequency structure of the speech signal. When
working with spectral features, such a system can also perform nonlinear spectral warping, effectively

implementing a form of nonlinear vocal tract normalization. Furthermore, it will be shown that HMM2

can be used to extract noise robust features, supposed to be related to formant regions, which can be used

as extra features for traditional HMM recognizers to improve their performance. These issues are evaluated

in the present paper, and different experimental results are reported on the Numbers95 database.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

In state-of-the-art automatic speech recognition (ASR), hidden Markov models (HMMs) are
widely used. While there are many suitable alternatives and design options for some parts of ASR
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systems such as feature extraction and phoneme probability estimation, HMMs are the uncon-
tested model for the temporal decoding stage. The success of HMMs can (at least partly) be
contributed to their ability to easily accommodate temporal variations, such as different durations
of phonemes, e.g. due to varying speaking rate or speakers� accents.

However, such variations do not only occur along the time axis, but can also be observed in
frequency, as shown in Fig. 1. In the spectograms depicting four different pronunciations of
phoneme �ay� (including some context), inter- as well as intra-speaker variability becomes ap-
parent (compare Fig. 1(a) with (b), and Fig. 1(b) with (c), respectively). Furthermore, Fig. 1(d)
shows the same phoneme pronounced in a different context, revealing the effects of coarticulation.
All sub-figures suggest that the position of spectral peaks may change significantly in the time-
frequency plane during the pronunciation of a phoneme.

When using HMMs, however, it is assumed that speech segments corresponding to one pho-
neme or sub-phone unit are: (1) invariant enough to be modeled by the same static distribution
and (2) stationary for their duration, which clearly is not the case. In an attempt to relax these
rather rigid assumptions, and encouraged by many more practical motivations (as further elab-
orated in Section 2.2), we recently proposed the HMM2 approach (Weber, Bengio, & Bourlard,
2000). HMM2 can be understood as an HMM mixture consisting of a primary HMM, modeling
the temporal properties of the speech signal, and a secondary HMM, modeling the speech signal�s
frequency properties. A secondary HMM is in fact inserted at the level of each state of the pri-
mary HMM, estimating local emission probabilities of acoustic feature vectors (conventionally
done by Gaussian mixture models (GMM) or artificial neural networks (ANN)). Consequently,
an acoustic feature vector is considered as a fixed length sequence of its components, which has
supposedly been generated by the secondary HMM.

Although HMM2 was developed independently, a similar approach had already been proposed
and used with some success in computer vision (Levin & Pieraccini, 1993; Kuo & Agazzi, 1993;
Samaria, 1994; Eickeler, M€uuller, & Rigoll, 1999). However, as further discussed below, our ap-
proach includes full EM training and was extended to take care of specificities of the problem at
hand.

Fig. 1. Spectograms of different pronunciations of the phoneme �ay� by different speakers and in different contexts.

Dark regions correspond to high, light regions to low energy spectral components. The vertical axis is the frequency, the

horizontal one the time evolution.
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The purpose of this paper is to revise theoretical and practical aspects of the HMM2 approach
with regard to its application to speech recognition. Firstly, a brief description of HMM2 is given
and motivations for applying it to speech recognition are outlined. This is followed by the HMM2
theory, including training and decoding, as well as some notes on its practical implementation. A
thorough analysis of HMM2, its possible drawbacks and constraints is then given. Finally, the
applications of HMM2 in the domain of speech, namely as a speech decoder and feature ex-
tractor, are investigated. Encouraging results for all these cases are given.

2. HMM2 description and motivations

2.1. Description

HMMs are quite powerful statistical models which are used to represent sequential data, e.g. a
sequence of T acoustic vectors yT1 ¼ fy1; y2 . . . ; yt; . . . ; yTg in speech recognition (as shown in the
upper part of Fig. 2). As each acoustic vector yt can itself be considered as a fixed length sequence
of its S components yt ¼ ytð1;SÞ ¼ fytð1Þ; ytð2Þ; . . . ; ytðsÞ; . . . ; ytðSÞg, another HMM can be used to
model this feature sequence (displayed in the lower part of the figure). By �component� we mean a
subvector of low dimension. For instance, a temporal feature vector of dimension S is split up into

Fig. 2. HMM2 system. In the upper part, a conventional HMM, working along the temporal axis, can be seen. The

local emission probability calculation is done with a secondary HMM, working along the frequency axis (depicted in

the lower part of the figure).
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S 1-dimensional subvectors. For the sake of simplicity, this case is assumed for all theoretical
derivations throughout this paper. However, the extension of this case to higher-dimensional
subvectors (consisting, e.g., of a coefficient and its first and second time derivatives) is straight-
forward, and was in fact used for the practical experiments.

While the primary HMMmodels temporal properties of the speech signal, the secondary, state-
dependent HMM is working along the frequency dimension. The secondary HMM is in fact
acting as a likelihood estimator for the primary HMM, a function which is accomplished by
GMMs or ANNs in conventional systems. However, the state emission distributions of the sec-
ondary HMM are again modeled by GMMs. Consequently, HMM2 is a generalization of the
standard HMM/GMM system, which it includes as a particular case. In fact, a standard HMM
can be realized with HMM2 by choosing a particular topology, e.g. the secondary HMM consists
just of one state and emits the entire temporal feature vector at once. An alternative way of re-
alizing a conventional HMM within the HMM2 framework is described in (Weber, Bengio, &
Bourlard, 2001a, 2001b). The parameters of an HMM2 are the primary transition probabilities,
Pðqtjqt�1Þ, the secondary transition probabilities Pðrsjrs�1; qtÞ, and the emission probabilities
pðytðsÞjrs; qtÞ.

2.2. Motivations

2.2.1. Better and more flexible modeling
HMMs assume piecewise stationarity of the speech signal and have difficulty in modeling the

dynamic properties along the feature (frequency) dimension. Using a secondary HMM for
the local likelihood estimation, these assumptions are relaxed, as a more flexible modeling of the
variability and dynamics inherent in the speech signal is allowed. For instance, a spectral peak
could be modeled by a single state of the secondary HMM, even though its position on the
frequency axis is quite variable (as seen in Fig. 1). Such a sparse secondary HMM topology also
allows for efficient parameter sharing. The number of parameters can be easily controlled by the
model topology and the probability density function associated with the secondary HMM states.

2.2.2. Modeling of correlation through secondary HMM topology

Under the typical HMM assumptions, correlation between feature vector components is not
ignored, but supposed to be modeled through the topology of the secondary HMM. Thereby,
correlation of close feature vector components is emphasized in comparison to distant correlation,
which corresponds to the properties of data we aim to model. In fact, HMM2 could allow a
sophisticated modeling of the underlying time-frequency structures of the speech signal and model
complex constraints in both the temporal and the frequency dimensions. In the same spirit, it was
proposed in (Bilmes, 1999) to model time/frequency correlation in the framework of buried
Markov models by using Bayesian networks to compute emission probabilities, where the con-
nectivity of the Bayesian network was determined by the degree of mutual information between
coefficients.

2.2.3. Nonlinear, state dependent spectral warping

The secondary HMM automatically performs a nonlinear, state dependent spectral warping.
While the conventional HMM does time warping and time integration, the secondary HMM

198 K. Weber et al. / Computer Speech and Language 17 (2003) 195–211



performs warping and integration along the frequency axis. This frequency warping has the effect
of automatic nonlinear vocal tract normalization, providing a kind of unsupervised and implicit
speaker adaptation (therefore tackling the problem of inter-speaker variations). Applying HMM2
in this field is also encouraged by the work of Lee and Rose (1998), who use a related frequency
warping approach to speaker normalization. With the same mechanism, intra-speaker variations
as well as coarticulation effects are also taken care of.

Furthermore, it can be expected that HMM2 will perform a dynamic formant trajectories
tracking. As a spectral peak (formant) can be modeled by an HMM state and a spectral valley by
another, the segmentation performed by the secondary HMM may be a good indicator for the
position of a formant. Formants are assumed to carry discriminant information in the speech
signal, moreover being especially robust in the case of degraded speech (Garner & Holmes, 1998;
Welling & Ney, 1998).

2.2.4. Extension of multi-band processing
Currently, much research in speech recognition is being devoted to multi-band speech

recognition (Morris, Hagen, Glotin, & Bourlard, 2001). In this case, the full frequency band is
split into multiple subbands which are processed independently (to a certain extent) by dif-
ferent classifiers before recombining the resulting probabilities to yield the fullband phonetic
probabilities. More recently, this multi-band ASR approach was extended by using the so
called �full combination approach� in which subband probability combination is performed by
integrating over all possible reliable subband combinations. HMM2 can be seen as a further
extension to this approach. Indeed, all possible paths through the secondary HMM will
correspond to different subband segmentations and recombinations. The frequency position of
the subbands is then automatically adapted to the data, following for example formant-like
structures.

3. HMM2 theory and implementation

This section gives a detailed description of the HMM2 approach, including training, decoding
and implementation. As stated before, although HMM2 was proposed independently and with
an entirely different motivation, it is related to similar approaches used previously for computer
vision, such as Planar HMMs (Levin & Pieraccini, 1993) and Pseudo 2D HMMs (Kuo &
Agazzi, 1993; Samaria, 1994; Eickeler et al., 1999). However, while these models are trained
using either a planar segmentation algorithm based on Viterbi (Levin & Pieraccini, 1993), a
segmental k-means algorithm (Kuo & Agazzi, 1993), or (after the two-dimensional model has
been converted to a similar one-dimensional HMM) with conventional EM training (Samaria,
1994; Eickeler et al., 1999), we here develop an EM algorithm which is especially adapted to
HMM2.

3.1. Notation

Basic notations used throughout this paper are explained in Fig. 2, with the following defini-
tions:
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• yt the observed vector at time step t, and ytðsÞ its observed component at frequency step s,
• qt the primary HMM state at time t, where Q is the set of all possible paths through the primary

HMM, and rsðqtÞ the secondary state associated with primary state qt at frequency step s, where
RðQÞ is the set of all possible paths through the secondary HMMs,

• pðytjqtÞ the emission probability in the primary HMM, where the instantiation pðytjqt ¼ iÞ is the
probability to emit yt in state i, and pðytðsÞjrs; qtÞ the emission probability in the secondary
HMM, where the instantiation pðytðsÞjrs ¼ l; qt ¼ iÞ is the probability to emit component ytðsÞ
in secondary state l of primary state i,

• Pðq0Þ the initial state probability of the primary HMM, and P ðr0jqtÞ the initial state probability
of the secondary HMM in primary HMM state qt,

• Pðqtjqt�1Þ the state transition probabilities in the primary HMM, where the instantiation
Pðqt ¼ ijqt�1 ¼ jÞ is the probability to go from primary state j at time t � 1 to state i at time
t, and Pðrsjrs�1; qtÞ the state transition probabilities in the secondary HMM in primary state
qt, where the instantiation Pðrs ¼ ljrs�1 ¼ m; qt ¼ iÞ is the probability to go from secondary
state m at the frequency step s� 1 to secondary state l at frequency step s while in primary state
i at time t,

• N the number of states in the primary HMM, and Ni the number of states of the secondary
HMM in the primary HMM state i,

• T the size of the sequence yT1 ¼ fy1; y2; . . . ; yTg, and S the size of the sequence of components
ytð1;SÞ ¼ fytð1Þ; ytð2Þ; . . . ; ytðSÞg.
The likelihood of the data sequence Y given the model parameters h at training step k is

then

LðY jhÞ ¼ pðyT1 jh
kÞ: ð1Þ

3.2. Training

Since an HMM is a special kind of mixture of distributions, an HMM2, being a mixture of
HMMs, can therefore also be considered as a more general mixture of distributions. It should
hence be natural that an Expectation–Maximization (EM) algorithm could be derived when the
emission and transition probabilities of the secondary (feature-based) HMMs are represented by
mixtures of Gaussians and multinomials, respectively. In this section, a sketch of such a derivation
is given, which is detailed in (Bengio, Bourlard, & Weber, 2000).

The general idea of EM is to select a set of hidden variables such that the knowledge of
these variables would simplify the learning problem. Hence, in the estimation step, the value
of the hidden variables is estimated, while in the maximization step, the expectation of the log
likelihood of the observations and the hidden variables is maximized, given the previous
values of the parameters. This two-step process is repeated iteratively and is proved to con-
verge to a local optimum of the likelihood of the observation (Dempster, Laird, & Rubin,
1977).

In the case of HMM2, two sets of indicator variables Z ¼ fzi;tg and W ¼ fwi;tðl;sÞg are defined
such that zi;t is defined to be 1 when qt ¼ i and 0 otherwise, and wi;tðl;sÞ is defined to be 1 when qt ¼ i
and rs ¼ l, and 0 otherwise. The joint likelihood of the observations and the hidden variables is
then defined as

200 K. Weber et al. / Computer Speech and Language 17 (2003) 195–211



LðY ;Q;RðQÞÞ ¼ P ðq0Þ
YT
t¼1

YN
i¼1

pðytjqt

"
¼ iÞzi;t

YN
j¼1

Pðqt ¼ ijqt�1 ¼ jÞzi;t �zj;t�1

#
; ð2Þ

which has the same form as the joint likelihood in standard HMMs, where the emission proba-
bility is expressed as

pðytjqt ¼ iÞ ¼Pðr0jqt ¼ iÞ
YS
s¼1

YNi

l¼1

pðytðsÞjrs

"
¼ l; qt ¼ iÞwi;tðl;sÞ

	
YNi

m¼1

P ðrs ¼ ljrs�1 ¼ m; qt ¼ iÞwi;tðl;sÞ�wi;tðm;s�1Þ

#
: ð3Þ

Having stated the problem, it is straightforward to derive both the E-step and the M-step of EM,
which are very similar to the general EM formulation for HMMs. During the E-step, the expected
value of the following variables are estimated:

ĉcði; tÞ ¼ E½zi;tjyT1 ; h
k� ¼ pðqt ¼ ijyT1 ; h

kÞ; ð4Þ

n̂nði; j; tÞ ¼ E½zi;t; zj;t�1jyT1 ; h
k� ¼ P ðqt ¼ i; qt�1 ¼ jjyT1 ; h

kÞ; ð5Þ

ĉci;tðl; sÞ ¼ E½wi;tðl;sÞjyT1 ; h
k� ¼ Pðrs ¼ ljqt ¼ i; yT1 ; h

kÞ; ð6Þ

n̂ni;tðl;m; sÞ ¼ E½wi;tðl;sÞ;wi;tðm;s�1ÞjyT1 ; h
k� ¼ Pðrs ¼ l; rs�1 ¼ mjqt ¼ i; yT1 ; h

kÞ ð7Þ

given the model parameters hk at the kth EM iteration.
Finally, during the M-step, the values of the parameters hkþ1 that maximize the expectation of

log LðY ;Q;RðQÞÞ are found. The final HMM2 update equations are similar to the update equa-
tions used in normal HMMs except that all the posteriors computed in the secondary HMM are
weighted by the posterior probability of being in the given state of the primary HMM. For in-
stance, if the emission probability of primary state i and secondary state l is defined as a diagonal
Gaussian with mean lil and standard deviation ril, the update equations are:

lkþ1
il ¼

P
t½ĉcði; tÞ

P
s yt;s � ĉci;tðl; sÞ�P

t½ĉcði; tÞ
P

s ĉci;tðl; sÞ�
ð8Þ

and

rkþ1
il ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t ĉcði; tÞ

P
s ĉci;tðl; sÞ � ðyt;s � lilÞ

2
h i
P

t½ĉcði; tÞ
P

s ĉci;tðl; sÞ�

vuut
: ð9Þ

3.3. Decoding

The aim of HMM decoding is to find the sequence of HMM states which best explains the
input data, while at the same time taking account of phonological, lexical and syntactical con-
straints. Therefore, under the typical HMM assumptions (i.e. piecewise stationarity and data
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independence), the recognized word sequence is defined by the path Q (from the set of all possible
paths Q) which maximizes the joint likelihood of the data and the hidden variables, given the
model parameters:

Q ¼ arg max
Q

P ðq0Þ
YT
t¼1

pðytjqtÞPðqtjqt�1Þ½ �
" #

: ð10Þ

The likelihood of an acoustic feature vector (i.e., a sequence of its components) given the primary
HMM state pðytjqtÞ may be calculated in two different ways:

pðytjqtÞ ¼
X
R

Pðr0jqtÞ
YS
s¼1

½pðytðsÞjrs; qtÞP ðrsjrs�1; qtÞ�
" #

ð11Þ

or, using the Viterbi approximation

pðytjqtÞ ffi max
R

P ðr0jqtÞ
YS
s¼1

½pðytðsÞjrs; qtÞPðrsjrs�1; qtÞ�
" #

; ð12Þ

where R is the set of all possible paths through the model. Naturally, every term of this equation is
conditioned on the state of the primary HMM. As GMMs with diagonal covariance matrices are
used for the likelihood estimation in the states of the secondary HMM, the corresponding local
probability density functions (PDF) are defined as follows

pðytðsÞjrs ¼ l; qt ¼ iÞ ¼
XG
g¼1

wilg
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2pr2
ilg

q exp

 
� 1

2

ytðsÞ � lilg

rilg

� �2
!
; ð13Þ

where G is the number of Gaussian mixtures.

3.4. Implementation

There are different ways to implement HMM2 systems. A straightforward realization is based
on the implementation of a generalized form of the standard EM algorithm, as described in the
previous section. A second way is to unfold the HMM2 (which, as previously stated, is a kind
of HMM mixture) into one large HMM, as described before in (Samaria, 1994; Eickeler et al.,
1999; Weber et al., 2001a). For this implementation, synchronization constraints have to be
introduced to ensure that exactly one feature vector is emitted between each two transitions in
the primary HMM. Standard EM training algorithms can be used to implement this unfolded
HMM2, and Viterbi decoding has to be used at the level of both the primary and the secondary
HMM.

4. Analysis

Hidden Markov models are a generalization of GMMs (suitable for sequential data). Given a
sufficiently large number of appropriately chosen parameters, these mixture models can ap-
proximate any continuous density to arbitrary accuracy (Bishop, 1995). Practically, however,
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there are limitations. The number of parameters in a mixture model has to be small enough to be
reliably estimated from the given amount of training data. Furthermore, for the case of sequential
data modeled by an HMM, there are additional assumptions, notably that of data independence
(conditioned on the state) and of piecewise stationarity (Rabiner & Juang, 1993). Moreover, there
may be constraints imposed by the HMM topology.

Naturally, in the case of HMM2, these assumptions and constraints not only apply to the
primary, but also to the secondary HMM. As is generally the case for a temporal sequence of
speech data, the assumptions of conditional data independence and of piecewise stationarity are
also not entirely satisfied for the HMM2 feature vector sequence, which may result in a mismatch
between the data and the model�s capacity for data representation and discrimination (Weber
et al., 2001a). In the following, the implications of the stationarity assumption and of the topology
chosen for the secondary HMM are investigated.

Fig. 3 shows an energy spectrum of phoneme �ay�. Although the assumption of piecewise
stationarity is not entirely correct, it is possible to segment this representation along the (hori-
zontal) frequency axis into a few quasi-stationary sectors, which could subsequently be repre-
sented by the same PDF. Consequently, several frequency components could be modeled by one
secondary HMM state.

The secondary HMM may take any topology, the most general being ergodic. However,
in this paper, the topology of the secondary HMM is chosen to be strictly top-down and to
have fewer states than there are components in one temporal feature vector (as also seen in
Fig. 2). Therefore, each secondary HMM2 state is expected to emit a number of adjacent
components, i.e. all components belonging to a certain frequency band. The number of
secondary HMM states determines the number of frequency bands into which the spectrum
is decomposed. The cut-off frequencies and bandwidths of these frequency bands will be

Fig. 3. Energy spectrum of a pronunciation of phoneme �ay�. Each line in the figure corresponds to one time step, and

thus to one feature vector (the thick black line is the mean).

K. Weber et al. / Computer Speech and Language 17 (2003) 195–211 203



dynamically determined, given the data and the model parameters, during training and
decoding.

It is known that HMMs cannot provide good duration modeling. This disadvantage applies
similarly to the modeling of bandwidth (and subsequently frequency positions) in the secondary
HMM. However, as frequency positions of different spectral regions (especially formants) rep-
resent important discriminant acoustic cues, it has to be ensured that HMM2 takes them into
account in an appropriate way. This problem can be resolved with an additional coefficient of the
feature vector, which indicates the frequency position of its respective component, as shown in
Fig. 4a (Weber et al., 2001b). This has the effect of forcing the Viterbi algorithm to take the
frequency position of each feature vector into account during the frequency segmentation.

As an example, Fig. 4 illustrates the typical spectral shape of two vowel classes a and b, both
consisting of two alternating spectral peaks (H) and valleys (L), resulting in the overall structure
HLHL. These classes can be distinguished only by the position of the spectral peaks and valleys,
and it is known that these positions are indeed the most important perceptual cues. Using HMM2
without frequency coefficients, the only way of modeling the differences between a and b is by the
transition probabilities, which, as stated previously, do not have much influence. The two classes
are therefore easily confusable. When introducing the frequency coefficients, the Viterbi
segmentation of a feature vector is in some way constrained and discriminability will be

Fig. 4. The frequency index: In (a), data assumed to be typical of the classes a and b are visualized by a black and a gray

curve, respectively. On the right, feature vectors (corresponding to the class a curve) as used in the secondary HMM

composed of coefficients cS , their delta dS and acceleration coefficients aS , as well as the frequency coefficient fS , are
shown. In (b), an example frequency segmentation is shown for each class. (c) shows a structure of an HMM with

alternating H and L states, which is able to model both classes. With an additional trained frequency coefficient (as

shown in (d)), discriminability can be ensured.
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maintained. In fact, the frequency coefficient is handled in the same way as the other coefficients in
a feature vector, i.e. it is modeled by the GMM. The Gaussian mean will correspond to the mean
frequency of the modeled frequency band, and the variance should be an indicator of the band-
width.

While the idea of using an additional frequency coefficient may seem surprising, it is justified in
the frequency warping performed by HMM2. Improved recognition results confirm the suitability
of this idea (Weber et al., 2001b). Naturally, in standard HMMs this frequency coefficient does
not give any additional information, as the frequency position of each coefficient is known.

To investigate the meaning of such frequency information, an HMM2 system was trained,
using secondary feature vectors augmented by the frequency index. In Fig. 5, the corresponding
Gaussian means are shown for different phonemes of the database (for comparison, those oc-
curring in Fig. 8 were chosen). It can be seen that these parameters vary across phonemes, and
that, for a given phoneme, they may also vary in time. The corresponding variances are also
visualized in the figure. While the trained means of the frequency index provide information about
the position of the frequency bands modeled by the corresponding states, the variances model the
respective bandwidths. The figure confirms that some general structural information of the
phonemes is modeled, which is likely to be related to formant regions.

5. Applications and results

In the previous sections, it already has become apparent that HMM2 is not only limited in
application to speech recognition decoding. It can also be used as feature extractor, e.g. to extract
formant related regions. Although it has been shown in (Weber et al., 2002) that, in the current
HMM2 implementation, there is no one-to-one correspondence to formant positions, it is how-
ever clear that the resulting features are extracted in a principled way, optimizing a maximum
likelihood criterion. The HMM2 applications are visualized in Fig. 6.

Supposing that HMM2 does indeed segment the speech signal into formant-like regions, and
given the fact that formants show a high robustness to noise, the HMM2 approach seems par-
ticularly promising for the recognition of degraded speech. The following gives a brief outline of

Fig. 5. Trained HMM2 parameters for different phonemes. In each column, the means of the frequency indices of the 4

secondary HMM states belonging to the same temporal state are visualized. Vertical bars show the respective variances.
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the basic experimental setup, and then describes the proposed HMM2 applications, including
speech recognition results in clean and noisy conditions where appropriate.

5.1. Experimental setup

Experiments were carried out on the OGI Numbers95 corpus (Cole, Noel, Lander, & Durham,
1995), on clean speech and on speech corrupted with three kinds of additive noises at four dif-
ferent signal-to-noise ratios (SNR). The noises were partly drawn from the Noisex database
(Varga, Steeneken, Tomlinson, & Jones, 1992), and partly provided by DaimlerChrysler in the
framework of the SPHEAR project (SPHEAR). For the motivations described in Section 2.2, it is
preferable to use features in the spectral domain. Frequency filtered filterbanks (FF2, see Nadeu,
1999) were chosen as they are lowly correlated spectral features which offer an acceptable baseline
performance for clean speech. Twelve normalized FF2 coefficients (including one energy coeffi-
cient) were used. The 4-dimensional feature vectors consisted of a coefficient, its first and second
order time derivatives and its frequency coefficient (here indices from 1 to 12). The HMM2 was
implemented with HTK (Young, Odell, Ollason, Valtchev, & Woodland, 1995). Eighty triphones
model were used, each consisting of 3 temporal states. All secondary HMMs had 4 states con-
nected in a looped top-down topology, similar to that in Fig. 2. However, to take care of the
energy, an additional state (without loops) was introduced as first state of each secondary HMM.
There were 10 Gaussian mixtures in each secondary HMM state. This system was trained glob-
ally, on clean speech only, using the EM algorithm, and Viterbi-based recognition was performed
under varying conditions (clean and all noises).

5.2. HMM2 used as a decoder

To realistically compare the performance of the HMM2 system (variant (a) in Fig. 6) to that of
a conventional HMM, tests were performed on both models given the same features (i.e., spectral
FF2). Fig. 7 shows results for one noise condition, with error bars indicating the 95% confidence
interval. It can be seen that the differences in the performance of these 2 models are statistically
significant. While HMM2 is not competitive with conventional HMMs in clean conditions or
noisy speech with a high SNR, for heavily degraded noise it easily outperforms the conventional

Fig. 6. HMM2 system used directly for speech recognition (a), and for features extraction (b). For (b), a second

recognition pass, using a conventional HMM, is performed.
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HMMs. In fact, HMM2 is better able to handle the mismatch between training and testing
conditions (as training was done on clean speech only). This was confirmed on all other tested
noise conditions. However, the obtained results (for both HMM and HMM2 with FF2 features)
are not competitive with the state-of-the-art performance (obtained with conventional HMMs,
but employing as features mel-frequency cepstral coefficients, including spectral subtraction (SS)
and cepstral mean subtraction). In fact, the performance is limited due to the choice of features in
the spectral domain, which were not found to be competitive with cepstral features. To further
improve HMM2 performance and to evaluate whether HMM2 really has advantages over the
usual HMM (using MFCCs) in adverse conditions, more research is required in the area of the
robust extraction of spectral features.

5.3. HMM2 used as a feature extractor

One of the motivations for HMM2 is its ability to extract structural information of the speech
signal, possibly corresponding to formant regions. Consequently, HMM2 could be used as a
formant tracker. Although the interpretation of the segmentation of the full HMM2 as formant-
like regions may not always be fully justified (as seen later), this application is motivated by
HMM2 being a tool which integrates a speech decoder and a formant tracker in a unique model.
This is supported by the assumption of Holmes (2000) that the ‘‘analysis of formants separately
from hypotheses about what is being said will always be prone to errors.’’

The segmentation between secondary HMM states, produced as a by-product of the Viterbi
algorithm, can be interpreted as a separator between regions of different energy levels in the
spectogram (just as the temporal segmentation separates phonetic units). If a distinct high energy
region is surrounded by low energy along the frequency dimension, it may be assumed to cor-
respond to a formant. Therefore, the HMM2 frequency segmentation could correspond to for-
mant-like structures.

Fig. 7. HMM vs. HMM2 performance for frequency filtered filterbank features, illustrated by the broken and solid

lines, respectively. Error bars for HMM WER show the 95% confidence intervals. The results are for clean speech and

car noise at different SNR.

K. Weber et al. / Computer Speech and Language 17 (2003) 195–211 207



A first experiment was carried out using an HMM2 with shared parameters for all primary
HMM states (i.e., the secondary HMM was the same for all phonetic units, trained on all data
regardless of the labeling). In this case, no frequency index was appended to the secondary feature
vectors. The frequency segmentation for an example speech unit is shown in Fig. 8a. It can be seen
that the 3rd secondary HMM state models a high energy region. However, in the case of less
distinct or absent formants (as for the case of unvoiced phonemes), irregularities and disconti-
nuities can be observed.

When using a full HMM2 with class-dependent secondary HMMs and including the frequency
index in the feature vector (as described in Section 5.1), the segmentation is smoother (see Fig.
8b). However, high and low energy regions are not necessarily modelled by equivalent secondary
HMM states (e.g., the third secondary HMM state may model a high energy region for one
phoneme and a low energy region for another). Nevertheless, a certain structure of the speech
signal becomes apparent from the segmentation. Furthermore, for the case of noisy speech, it has
been shown that the HMM2 features exhibit a comparatively high robustness: the separation into
regions of different energy levels is largely maintained.

Based on the above, HMM2 can be used as a feature extractor. This application is motivated
by (1) the assumption that HMM2 extracts formant-like structures and (2) the discriminant

Fig. 8. Segmentations obtained (on unseen data) from (a) a single secondary HMM and (b) a full HMM2 system. In

both figures, the horizontal lines correspond to the frequency segmentation. In (b), the vertical lines show the temporal

segmentation obtained from the full HMM2 system, where phoneme boundaries are displayed as thick lines, and

transitions between temporal states of the same phonemes as thin ones.
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properties of formant positions, and thus their usefulness as features for ASR. However, the
formant-like features extracted by HMM2 are rather crude: they typically correspond to the
frequency index of the secondary feature vector after which a transition from one secondary
HMM state to the next occurred. Four secondary HMM states are used here for each phoneme,
and a feature vector of 3 components is obtained, e.g. [3 7 9].

The features extracted by the simplified HMM2 (sharing parameters for all primary states) and
the full HMM2 were tested. Word error rates (WER) of 37.0% and 18.6%, respectively, were
achieved. From these results, it also appears that the smoother segmentation obtained from the
full HMM2 contains more discriminant information. In addition to using the full HMM2 fre-
quency segmentation as new features, the temporal segmentation was converted into a time index.
Using the augmented 4-dimensional feature vectors, the WER could further be decreased to
15.0%. We consider this a good result given the low dimension and the crudeness of the feature
vectors. However, before drawing any conclusions, further comparisons should be performed with
other low-dimensional features, such as MFCCs projected down with linear discriminant analysis,
and other formant-like features or even hand-labeled formants. Positive results in that sense were
recently obtained on a different database and are reported in (Weber et al., 2002).

When either of the different segmentation features (of the simplified or full HMM2) are
combined in a multi-stream approach (at the level of the local likelihoods) with noise-robust
MFCCs (already including SS and cepstral mean subtraction), an improved robustness in noisy
speech was observed, as shown in Table 1. Although equally good results might be obtained when
using additional features other than those extracted with HMM2, it can be stated that a widely
employed state-of-the-art noise-robust ASR system could be significantly improved (with more
than 98% confidence).

6. Conclusion

This paper has presented the motivations and foundations underlying the use of HMM2, a
particular form of HMM in which emission probabilities are estimated through secondary, state-
dependent, HMMs working along the acoustic feature dimension. It was shown that the
parameters of this new model can also be trained using the Expectation-Maximization (EM)
algorithm.

Including standard multi-Gaussian HMMs as a particular case, HMM2 provides additional
modeling capabilities, allowing a principled approach towards flexible modeling of the time/

Table 1

Performance of MFCC-SS and full HMM2 features, and their multi-stream combination: WER on Numbers95 at

different signal-to-noise ratios: means over 3 different noise types

SNR HMM2 features MFCC-SS MFCC-SSþHMM2 features

Clean 15.0 5.7 5.7

18 16.1 6.7 6.6

12 20.4 9.3 9.0

6 32.8 16.7 16.1

0 56.0 35.4 34.3
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frequency structure of speech through warping along the temporal and frequency dimensions. In
particular, this paper has investigated the frequency warping aspect of HMM2. It was shown that,
working in the spectral domain, HMM2 was able to automatically extract pertinent state/phone-
specific formant-like structures during training and recognition. In fact, these formant-like
structures can be used as low-dimensional features, which were shown to yield impressive speech
recognition results. Furthermore, when using these features in conjunction with noise-robust
MFCCs in standard speech recognition systems, an improved noise robustness was observed.
Finally, HMM2 was also used directly as a decoder, achieving a good (although not yet fully
competitive) recognition performance. These results indicate the advantages of HMM2 as an
acoustic model, motivating research towards, for example, nonlinear vocal tract normalization,
new sub-band speech recognition approaches, and improved noise robustness.
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