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Abstract. In this paper we extend the recently proposedDCT-mod2feature ex-
traction technique (which utilizes polynomial coefficients derived from 2D DCT
coefficients obtained from horizontally & vertically neighbouring blocks) via
the use of various windows and diagonally neighbouring blocks. We also pro-
poseenhanced PCA, where traditional PCA feature extraction is combined with
DCT-mod2. Results using test images corrupted by a linear and a non-linear
illumination change, white Gaussian noise and compression artefacts, show that
use of diagonally neighbouring blocks and windowing is detrimental to robust-
ness against illumination changes while being useful for increasing robustness
against white noise and compression artefacts. We also show that theenhanced
PCA technique retains all the positive aspects of traditional PCA (that is, robust-
ness against white noise and compression artefacts) while also being robust to il-
lumination changes; moreover,enhanced PCAoutperforms PCA with histogram
equalisation pre-processing.

1 Introduction

A face verification (authentication) system verifies the claimed identity based on images
(or a video sequence) of the claimant’s face. Such systems have forensic and security
(i.e., access control) applications. Generally speaking, a full face verification system
can be thought of as being comprised of three stages:

1. Face localization and segmentation
2. Normalization
3. The actual face verification, which can be further subdivided into:

(a) Feature extraction
(b) Classification

The second stage (normalization) usually involves an affine transformation [8] (to cor-
rect for size and rotation), but it can also involve an illumination normalization (how-
ever, illumination normalization may not be necessary if the feature extraction method
is robust against varying illumination). In this work we shall concentrate on the feature
extraction part of the last stage.
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There are many approaches to facial feature extraction; for example, Turk and Pent-
land [17] used Principal Component Analysis (PCA), Duc et al. [5] used biologically
inspired 2D Gabor wavelets, while Eickeler et al. [7] obtained features using the 2D
Discrete Cosine Transform (DCT). Recently, Sanderson & Paliwal [14] used a modi-
fied form of DCT feature extraction, termedDCT-mod2, which has been shown to be
robust against illumination direction changes.

While robustness against illumination direction changes may be of most concern in
security systems, in forensic applications [10] other types of image corruption can be
important. Here, face images may be obtained in various illumination conditions from
various sources: digitally stored video, possibly damaged and/or low quality analogue
video tape or TV signal corrupted with “static” noise.

The rest of the paper is organized as follows. In Section 2 we describe and extend
the DCT-mod2feature extraction technique through the use of various windows. In
Section 3 we further extend theDCT-mod2approach via the addition of extra features.
In Section 4, PCA andDCT-mod2feature extraction techniques are combined to form
enhanced PCA. In Section 5 we describe a Gaussian Mixture Model (GMM) classifier
which shall be used as the basis for experiments. In Section 6, the performance of all
presented feature extraction techniques is evaluated on images corrupted by a linear &
non-linear illumination change, white Gaussian noise (simulating “static” noise) and
compression artefacts (simulating compressed digital video). Section 7 is devoted to
discussion of results and conclusions.

To keep consistency with traditional matrix notation, pixel locations (and image
sizes) are described using the row(s) first, followed by the column(s).

2 Extension of DCT-mod2 feature extraction

In DCT-mod2feature extraction [14] a given face image is analyzed on a block by block
basis; each block isNP ×NP (here we useNP = 8) and overlaps neighbouring blocks
by 50%. Each block is decomposed in terms of 2D Discrete Cosine Transform (DCT)
basis functions [8]. A feature vector for each block is then constructed as:

x =
h

∆hc0 ∆vc0 ∆hc1 ∆vc1 ∆hc2 ∆vc2 c3 c4 · · · cM−1

iT

(1)

wherecn represents then-th DCT coefficient,M is the number of retained DCT co-
efficients, while∆hcn and∆vcn represent the horizontal and vertical delta coefficients
respectively. For a block located at(b, a), the delta coefficients are defined as modified
orthogonal polynomial coefficients [16]:
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whereh is a2K + 1 dimensional symmetric window vector andc
(b,a)
n is then-th DCT

coefficient for block located at(b, a).
Compared to traditional DCT feature extraction [7, 8], the first three DCT coeffi-

cients are replaced by their respective horizontal and vertical deltas, in order to reduce
the effects of illumination direction changes.



SinceDCT-mod2feature extraction for a given block is only possible when the
block has vertical and horizontal neighbours, processing an image which hasNY rows
andNX columns results inND = (2NY

NP
− 3)× (2NX

NP
− 3) feature vectors1.

In [14], delta coefficients were calculated usingK = 1 and a rectangular window
(i.e., h = [ 1 1 1 ]T ), which amounted to finding the differences between DCT coef-
ficients obtained from neighbouring blocks. In this paper we shall extend theDCT-mod2
approach withK = 2 (which increases the number of blocks used in deriving aDCT-mod2
feature vector) and various windows.

By inspecting Eqns. (2) & (3) and assuming that a rectangular window is used, it
can be seen that forK = 2, DCT coefficients from blocks withk = −2 andk = 2 have
the largest contribution to the final value; since this may not be optimal, we shall study
two additional windows:

– Window B, whereh = [ 0.5 1.0 1.0 1.0 0.5 ]T , causing all DCT coefficients to
have equal contribution

– Window C, whereh = [ 0.25 1.0 1.0 1.0 0.25 ]T , causing the DCT coefficients
from the outer blocks to have smaller contribution

We shall refer to the rectangular window (h = [ 1 1 1 1 1 ]T ) as Window A.

3 Proposed DCT-mod3 feature extraction
In [14], DCT-mod2feature extraction has been shown to be robust against a horizontal
illumination direction change. Since an illumination direction change can occur in any
direction, we propose to extend theDCT-mod2approach by including delta coefficients
for both diagonal directions, defined as follows:
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A feature vector for each block is then constructed as:

x = [ ∆dc0 ∆ec0 ∆dc1 ∆ec1 ∆dc2 ∆ec2 ∆hc0 ∆vc0 ∆hc1 ∆vc1 ∆hc2 ∆vc2

c3 c4 · · · cM−1 ]T (6)

where the(b, a) superscript was omitted for clarity. We shall term this approach as
DCT-mod3.

We will evaluate the performance of theDCT-mod3approach forK = 1 andK = 2
with various windows (as explained in Section 2 for theDCT-mod2approach).

4 Proposed Enhanced PCA
In standard PCA based feature extraction (also known as eigenfaces [17]), a given face
image is represented by matrixF containing grey level pixel values;F is converted to
a face vector,f , by concatenating all the columns; aD-dimensional feature vector,x,
is then obtained by:

x = UT (f − fµ) (7)

1 Thus for a56× 64 image, there are11× 13 = 143 vectors.



whereU containsD eigenvectors (with largest corresponding eigenvalues) of the train-
ing data covariance matrix, andfµ is the mean of training face vectors.

PCA derived features have been shown to be sensitive to changes in the illumi-
nation direction [1] causing rapid degradation in verification performance [14]. In the
proposedenhanced PCAapproach, a given face image is processed usingDCT-mod2
feature extraction to produce pseudo-imageF̂ , which is then used in place ofF by
traditional PCA feature extraction. SinceDCT-mod2feature vectors are robust to illu-
mination changes, features obtained via theenhanced PCAshould also be immune to
illumination changes. Formally, the pseudo image is constructed as follows:

F̂ =

26664
c (∆b,∆a) c (∆b,2∆a) c (∆b,3∆a) · · ·
c (2∆b,∆a) c (2∆b,2∆a) c (2∆b,3∆a) · · ·
c (3∆b,∆a) c (3∆b,2∆a) c (3∆b,3∆a) · · ·
...

...
...

. . .

37775 (8)

wherec (n∆b,n∆a) denotes theDCT-mod2feature vector (generated usingK = 1)
for block located at(n∆b, n∆a), while ∆b and∆a are block location advancement
constants for rows and columns respectively. SinceNP = 8 and we are using a 50%
overlap,∆b and∆a are equal to 4. Because eachDCT-mod2feature vector isM + 3
dimensional, matrix̂F has(M + 3)(2NY

NP
− 3) rows and(2NX

NP
− 3) columns.

The proposedenhanced PCAmethod will be compared against the standard ap-
proach (no pre-processing) as well as pre-processing using histogram equalisation [8],
often used in an attempt to reduce the effects of varying illumination conditions [9, 11].

5 GMM Based Classifier
Given a claim for personC ’s identity and a set of feature vectorsX = {xi}NV

i=1 sup-
porting the claim, the average log likelihood of the claimant being the true claimant is
calculated using:

L(X|λC) =
1

NV

NVX
i=1

log p(xi|λC) (9)

where p(x|λ) =

NGX
j=1

mj N (x;�j ,Σj) (10)

λ = {mj ,�j ,Σj}NG
j=1 (11)

Here,N (x; µ,Σ) is a D-dimensional Gaussian function with meanµ and diagonal
covariance matrixΣ:

N (x;�,Σ) =
1
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D
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�−1
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�
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λC is the parameter set for personC, NG is the number of Gaussians andmj is the
weight for Gaussianj (with constraints

∑NG

j=1 mj = 1 and∀ j : mj ≥ 0).
Given the average log likelihood of the claimant being an impostor,L(X|λC), an

opinion on the claim is found using:

Λ(X) = L(X|λC)− L(X|λC) (13)

The verification decision is reached as follows: given a thresholdt, the claim is accepted
whenΛ(X) ≥ t and rejected whenΛ(X) < t.



5.1 Model Training

Given a set of training vectors,X = {xi}NV
i=1 (which may come from several images),

the GMM parameters (λ) for each client model are found by adapting a Universal Back-
ground Model (UBM) using a form ofmaximum a posteriori(MAP) adaptation [12].
The UBM is trained with the Expectation Maximization (EM) algorithm [3, 6] using
training data from all clients.

Since the UBM is a good representation of many clients, it is also used to find the
likelihood of the claimant being an impostor, i.e.:

L(X|λC) = L(X|λUBM) (14)

6 Experiments

6.1 VidTIMIT Audio-Visual Database
The VidTIMIT database [15], is comprised of video and corresponding audio record-
ings of 43 people (19 female and 24 male), reciting short sentences. It was recorded in
3 sessions, with a mean delay of 7 days between Session 1 and 2, and 6 days between
Session 2 and 3. There are 10 sentences per person; the first six sentences are assigned
to Session 1; the next two sentences are assigned to Session 2 with the remaining two to
Session 3. The mean duration of each sentence is 4.25 seconds, or approximately 106
video frames.

6.2 Experiment Setup
Before feature extraction can occur, the face must first be located [2]. Furthermore,
to account for varying distances to the camera, a geometrical normalization must be
performed. We treat the problem of face location and normalization as separate from
feature extraction.

To find the face, we use template matching with several prototype faces of varying
dimensions. Using the distance between the eyes as a size measure, an affine transfor-
mation is used [8] to adjust the size of the image, resulting in the distance between the
eyes to be the same for each person. Finally aNY ×NX (NY = 56, NX = 64) pixel
face window,w(y, x), containing the eyes and the nose (the most invariant face area to
changes in the expression and hair style) is extracted from the image.

For PCA based methods, the dimensionality of the face window is reduced to 32
(choice based on preliminary experiments and [1, 13]).

ForDCT-mod2andDCT-mod3the number of retained DCT coefficients isM = 15
(choice based on [7, 14]) resulting in 18 and 24 dimensional vectors, respectively.

In our experiments, we use a sequence of images (video); if the sequence hasNI im-
ages, thenNV = NI for the PCA based approaches andNV = NIND for DCT-mod2
& DCT-mod3approaches.

For each feature extraction method, client models withNG = 8 (choice based on
preliminary experiments) were generated from features extracted from face windows in
Session 1. Sessions 2 and 3 were used for testing. Thus for each person an average of
636 images were used for training and 424 for testing.

Ignoring any edges created by shadows, the main effect of an illumination direction
change is that one part of the face is brighter than the rest. Taking this into account,
an artificial illumination change was introduced to face windows extracted from Ses-
sions 2 and 3; to simulate more illumination on the left side of the face and less on the
right, a new face windowv(y, x) is created by transformingw(y, x) using:



v(y, x) = w(y, x) + mx + δ (15)

for y = 0, 1, ..., NY − 1 and x = 0, 1, ..., NX − 1

where m =
−δ

(NX − 1)/2

δ = illumination delta (in pixels)

Since the above model of illumination direction change is rather restrictive, a second,
Gaussian shaped (non-linear), artificial illumination was also used, as defined below:

v(y, x) = w(y, x) + 2δ

�
exp

�−1

2
p T A−1 p

�
− 1

2

�
(16)

for y = 0, 1, ..., NY − 1 and x = 0, 1, ..., NX − 1

where p = [ y x ]T − [ (NY − 1)/2 (NX − 1)/2 ]T

A =

�
(NY /4)2 0

0 (NX/4)2

�
δ = illumination delta (in pixels)

For experiments involving compression artefacts, face windows extracted from Ses-
sions 2 and 3 were processed by a JPEG codec [18] (simulating compressed digital
video). The JPEG codec reduces the bitrate of a given image at the expense of introduc-
ing distortion in the form of compression artefacts; the distortion is measured in terms
of Peak Signal to Noise Ratio (PSNR). The average PSNR of the corrupted images
was 31.13 dB. Similarly, for TV “static” noise experiments, face windows extracted
from Sessions 2 and 3 were corrupted by additive white Gaussian noise, resulting in the
PSNR being equal to 22.5 dB. Example face windows are shown in Figure 1.

To find the performance, Sessions 2 and 3 were used for obtaining example opin-
ions of known impostor and true claims. Four utterances, each from 8 fixed persons
(4 male and 4 female), were used for simulating impostor accesses against the remain-
ing 35 persons. For each of the remaining 35 persons, their four utterances were used
separately as true claims. In total there were 1120 impostor and 140 true claims. The
decision threshold was then set so thea posterioriperformance was as close as possible
to the Equal Error Rate (EER) (i.e., where the false acceptance rate is equal to the false
rejection rate) [4]. This protocol is described in more detail in [15].

In the first experiment, we found the performance of theDCT-mod2approach for
K = 1 andK = 2 with various windows (as described in Section 2). Results are
presented in Table 1.

The second experiment is similar to the first; here we used theDCT-mod3approach.
Results are presented in Table 2.

Fig. 1. From left to right: original image, corrupted with linear illumination change (δ=80),
corrupted with Gaussian illumination change (δ=80), corrupted with white Gaussian noise
(PSNR=22.5 dB), corrupted with compression artefacts (PSNR=31.4 dB).



In the final experiment we evaluated theenhanced PCAapproach and compared it
against the standard PCA approach without pre-processing and with histogram equali-
sation pre-processing. Results are presented in Table 3.

7 Discussion and Conclusions

As can be seen in Table 1, extending theDCT-mod2approach withK = 2 and various
windows mainly causes worse performance (when compared toK = 1) for the case of
Gaussian illumination change; these results indicate that in order to achieve robustness
against illumination changes, delta coefficients [see Eqns. (2) & (3)] should only be
calculated using directly neighbouring blocks; this is also suggested by the results for
K = 2, where Window C obtains better results than Windows A & B (recall that
for Window C the DCT coefficients from the outer blocks have smaller contribution).
The results also show thatDCT-mod2features are somewhat affected by compression
artefacts and are significantly affected by white Gaussian noise.

DCT-mod3features (Table 2) obtain comparable performance toDCT-mod2fea-
tures on clean images and a improvement in the error rate for images corrupted by
compression artefacts & white noise (especially forK = 2); however, it must be noted
that for the case of white noise the performance is still quite poor. For images corrupted
by either the linear or Gaussian illumination change, the performance is significantly
worse thanDCT-mod2, indicating that use of diagonal delta coefficients [see Eqns. (4)
& (5)] is detrimental to robustness; further analysis is required to determine the cause.

In Table 3 we can see that the standard andenhanced PCAapproaches are robust
against white noise (in contrast toDCT-mod2andDCT-mod3approaches). We can also
see that use of histogram equalisation as pre-processing for PCA increases the error
rate in all cases, and most notably offers no help against illumination changes; this is
in contrast toenhanced PCAwhich is significantly more robust against illumination

Type clean lin. illum. Gaus. illum. white noise compr.
K=1 3.57 5.85 13.57 43.75 9.96

K=2, Win A 2.86 5.00 27.10 42.05 9.38
K=2, Win B 3.48 5.00 24.29 43.53 10.00
K=2, Win C 3.57 4.87 21.43 42.72 10.00

Table 1.Performance ofDCT-mod2feature extraction. Results are quoted in terms of EER.

Type clean lin. illum. Gaus. illum. white noise compr.
K=1 4.29 7.14 17.86 40.71 8.53

K=2, Win A 2.86 21.38 32.99 33.57 4.87
K=2, Win B 2.32 14.91 37.14 35.13 4.96
K=2, Win C 3.53 11.43 30.00 39.87 5.71

Table 2.Performance ofDCT-mod3feature extraction. Results are quoted in terms of EER.

Type clean lin. illum. Gaus. illum. white noise compr.
standard 3.57 27.14 32.19 3.57 3.57
hist. equ. 4.29 32.86 36.34 7.14 4.33
enhanced 5.31 7.14 18.57 5.67 6.03

Table 3.Performance of PCA based feature extraction. Results are quoted in terms of EER.



changes at the expense of slightly higher error rates for the case of clean images and
images corrupted with white noise & compression artefacts.

While the additive white noise greatly distorts the image, the average pixel inten-
sity remains largely the same. Thus the robustness of the PCA based approaches stems
from the dot product operation [see Eqn. (7)], where a given face is projected onto an
eigenface. The final dot product remains largely the same for both clean and corrupted
images (similar reasoning can be applied for the case of images corrupted with com-
pression artefacts). In contrast,DCT-mod2& DCT-mod3feature sets describe only a
small section of the face and hence are easily affected by additive noise. Due to the di-
agonal delta coefficients,DCT-mod3feature set describes a slightly larger section of the
face thanDCT-mod2and is thus (slightly) more robust against white Gaussian noise.

Based on the obtained results it can be argued that out of all the presented feature
extraction techniques,enhanced PCAis overall the most robust method.
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