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Abstract. Biometric authentication is a process of verifying an identity claim using a person’s
behavioural and physiological characteristics. Due to the vulnerability of the system to envi-
ronmental noise and variation caused by the user, fusion of several biometric-enabled systems is
identified as a promising solution. In the literature, various fixed rules (e.g. min, max, median,
mean) and trainable classifiers (e.g. linear combination of scores or weighted sum) are used to
combine the scores of several base-systems. How exactly do correlation and imbalance nature
of base-system performance affect the fixed rules and trainable classifiers? We study these joint

aspects using the commonly used error measurement in biometric authentication, namely Equal
Error Rate (EER). Similar to several previous studies in the literature, the central assumption
used here is that the class-dependent scores of a biometric system are approximately normally dis-
tributed. However, different from them, the novelty of this study is to make a direct link between
the EER measure and the fusion schemes mentioned. Both synthetic and real experiments (with
as many as 512 fusion experiments carried out on the XM2VTS benchmark score-level fusion data
sets) verify our proposed theoretical modeling of EER of the two families of combination scheme.
In particular, it is found that weighted sum can provide the best generalisation performance when
its weights are estimated correctly. It also has the additional advantage that score normalisation
prior to fusion is not needed, contrary to the rest of fixed fusion rules.
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1 Introduction

There exists a vast literature study that proposes to model theoretical classification errors for fusion,
e.g., [6, 17]. However, to the best of our knowledge, a direct modeling of Equal Error Rate (EER), i.e.,
an evaluation error commonly used in biometric authentication tasks, has not been attempted. This is
partly because of the unknown decision threshold which prevents further analysis. Analysis of EER is
cumbersome without making any assumption about the distribution of the classifier scores, e.g., using
a non-parametric approach. We tackle this problem by assuming that the class-dependent scores are
normally distributed. With a very large number of independent experiments, our previous work [13]
shows that although the class-dependent scores are often not normally distributed, the estimated EER
is fairly robust to deviation from such assumption.

In [6], the theoretical classification error of six classifiers are thoroughly studied for a two-class
problem. This study assumes that the base classifier scores are probabilities ∈ [0, 1]. Hence probability
of one class is one minus the probability of the other class and the optimal threshold is always set to 0.5.
It also assumes that all baseline classifier scores are drawn from a common distribution. Gaussian
and uniform distributions are studied. The first assumption is not always applicable to biometric
authentication. This is because the output of a biometric system is often not necessarily a probability
but a distance measure, a similarity or a log-likelihood ratio. Moreover, decisions are often taken by
comparing a classifier score with a threshold. The second assumption, in practice, is also unrealistic
in most situations, particularly in multimodal fusion. This is because the (class-dependent) score
distributions are often different across different classifiers.

In [17], order statistics (OS) combiners are examined both theoretically and empirically. Two
concepts are introduced: biased and unbiased. Unbiased classifiers have optimal decision boundary
whereas biased classifiers have a systematic offset from the optimal decision boundary. The unbiased
classifier has an inherent error (or Bayes error) due to the data itself, whereas the biased classifier also
has the same inherent error in addition to the added error due to the boundary offset. The former
is analogous to bias and the latter is analogous to variance in regression problems, as often used in
the analysis of bias-variance decomposition. It was shown in [17] that the added error due to the OS
combiners can be reduced with respect to the single-classifiers added error. It was claimed that OS
combiners are good alternatives to taking the average of scores (the mean operator). Unfortunately,
empirical evidences only show that the performance of the OS combiners are comparable to that of the
mean operator. While the analysis in [17] is certainly interesting, there is no direct way of inferring
EER. It is also unclear how correlation affects the OS combiners. This is partly due to the
fact that incorporating correlation into the OS combiners is analytically intractable. In intramodal
fusion of biometric authentication tasks, scores are often correlated as they are derived from the same
biometric sample, i.e, the same source of information.

The goal of this paper is thus to study the EER of fixed and trainable fusion classifiers with
respect to the correlation and the imbalance performance nature of baseline systems. Section 2 briefly
discusses the general theoretical EER framework and how it can be applied to study several commonly
used fusion classifiers. Section 3 discusses the important assumptions made. Sections 4 and 5 presents
experimental results on synthetic and real data. These are followed by conclusions in Section 6.

2 Theoretical EER

The fundamental problem of biometric authentication can be viewed as a classification task to decide
if person x is a client or an impostor. In a statistical framework, the probability that x is a client
after a classifier fθ observes his/her biometric trait can be written as:

y ≡ fθ(fe(s(x))), (1)

where, s is a sensor, fe is a feature extractor, θ is a set of classifier parameters associated to the
classifier fθ.
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Note that there exists several types of classifiers in BA, all of which can be represented by Eqn. (1).
They can be categorized by their output y, i.e., probability (within the range [0, 1]), distance metric
(more than or equal to zero), or log-likelihood ratio (a real number). In the context of multimodal
BA, y is associated to the subscript i, which takes on different meanings in different context of fusion,
as follows:

yi(x) =







fθ(fe(s(xi))) if multi-sample
fθ(fe(si(x))) if multimodal
fθ(fe,i(s(x))) if multi-feature
fθ,i(fe(s(x))) if multi-classifier

(2)

Note that i is the index to the i-th sample in the context of multi-sample fusion. i can also mean the
i-th biometric modality in multimodal fusion, etc. In a general context, we refer to yi(x) as the i-th
response and there are altogether N responses (i = 1, . . . , N). It is important to note that all yi(x)
belong to the same access. We write yi instead of yi(x) for simplicity, while bearing in mind that yi

is always dependent on x.
To decide if an access should be granted or not, all yi|∀i have to be combined to form a single

output. This can be expressed as:

yCOM = fCOM (y1, . . . , yN )

Several types of combination strategies are used in the literature, e.g., min, max, median, mean (or
sum), weighted sum, product and weighted product. They are defined as follow:

ymin = mini(yi), ymax = maxi(yi) ymed = mediani(yi),

ywsum =
∑N

i=1 wiyi, and ywprod =
∏N

i=1 ywi

i ,
(3)

where wi|∀i are parameters that need to be estimated. The mean operator is a special case of weighted
sum with wi = 1

N
. Similarly, the product operator is a special case of weighted product with wi = 1.

The decision function based on the score y (for any y after fusion {yCOM |COM ∈ {min, max,
mean, median, wsum, prod, wprod} or any yi prior to fusion; both cases are refered to simply as y)
is defined as:

decision =

{
accept if y > ∆
reject otherwise.

(4)

Because of the binary nature of decision, the system commits two types of error called False Acceptance
(FA) and False Rejection (FR) errors, as a function of the threshold ∆. FA is committed when x

belongs to an impostor and is wrongly accepted by the system (as a client) whereas FR is committed
when x belongs to a client and is wrongly accepted by the system. They can be quantified by False
Acceptance Rate (FAR) and False Rejection Rate (FRR) as follow:

FAR(∆) = FA(∆)
NI

and FRR(∆) = FR(∆)
NC

, (5)

where FA(∆) counts the number of FA, FR(∆) counts the number of FR, NI is the total number of
impostor accesses and NC is the total number of client accesses.

At this point, it is convenient to introduce two conditional variables, Y k ≡ Y |k, for each k being
client or impostor, respectively i.e., k ∈ {C, I}. Hence, yk ∼ Y k is the score y when person x is
k ∈ {C, I}. Let p(Y k) be the probabilistic density function (pdf) of Y k. Eqns. (5) can then be
re-expressed by:

FAR(∆) = 1 − p(Y I > ∆) and FRR(∆) = p(Y C > ∆). (6)

Because of Eqn. (4), it is implicitly assumed that E[Y C ] > E[Y I ], where E[z] is the expectation of
z. When p(Y k) for both k ∈ {C, I} are assumed to be Gaussian (normally distributed), they take on
the following parametric forms (see [12]):

FAR(∆) = 1
2 − 1

2erf
(

∆−µI

σI
√

2

)

and FRR(∆) = 1
2 + 1

2erf
(

∆−µC

σC
√

2

)

(7)
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Table 1: Summary of theoretical EER based on the assumption that class-independent scores are
normally distributed.

Fusion methods EER where

average baseline1 EERAV = eer
(

µC
AV −µI

AV

σC
AV

+σI
AV

) µk
AV = 1

N

∑

i µk
i

(
σk

AV

)2
= 1

N

∑

i

(
σk

i

)2

single-best classifier EERbest = eer
(

maxi

(
µC

i −µI
i

σC
i

+σI
i

))

–

mean rule EERmean = eer
(

µC
mean−µI

mean

σC
mean+σI

mean

) µk
mean = 1

N

∑

i µk
i

(
σk

mean

)2
= 1

N2

∑

i,j Σk
i,j

weighted sum3 EERwsum = eer
(

µC
wsum−µI

wsum

σC
wsum+σI

wsum

) µk
wsum =

∑

i ωiµ
k
i

(
σk

wsum

)2
=

∑

i,j ωiωjΣ
k
i,j

product rule EERprod = eer

(
µC

prod−µI
prod

σC
prod

+σI
prod

)
(

σk
prod

)2

=
(∑

i σ−1
i

)−1

µk
prod =

∑

i

(

(σk
prod)

2

(σk
i )2 µk

i

)

OS combiners2 EEROS = eer
(

µC
OS−µI

OS

σC
OS

+σI
OS

) µk
OS = µk

(
σk

OS

)2
=

(
γσk

OS

)2

Remark 1: This is not a classifier but the average performance of baselines when used independently
of each other. By its defintion, scores are assumed independent as classifiers function independently
of each other. Remark 2: OS classifiers assume that scores across classifiers are i.i.d. The reduction
factor γ is listed in Table 2. The mean and weighted sum classifiers do not assume that scores are
i.i.d. Remark 3: the weighted product takes the same form as weighted sum, except that log-normal
distribution is assumed instead.

where µk and σk are mean and standard deviation of Y k, and the erf function is defined as follows:

erf(z) =
2√
π

∫ z

0

exp
[
−t2

]
dt. (8)

At Equal Error Rate (EER), FAR=FRR. Solving this constraint yields (see [12]):

EER = 1
2 − 1

2erf
(

F-ratio√
2

)

≡ eer(F-ratio) where F-ratio = µC−µI

σC+σI . (9)

The function eer is introduced here to simplify the EER expression as a function of F-ratio because
eer will be used frequently in this paper. Note that the threshold ∆ is omitted since there is only one
unique point that satisfies the EER criterion.

2.1 Theoretical EER of Fusion Classifier

We now derive several parametric forms of fused scores using different types of classifiers, namely the
single-best classifier, mean, weighted sum, product rule and Order Statistics (OS)-combiners such as
min, max and median. The OS-combiners are further discussed in Section 2.2.

The analysis in this section is possible due to the simple expression of F-ratio, which is a function
of four parameters: {µk, σk|∀k={C,I}} as shown in Eqn. (9). Suppose that the i-th response is yk

i

sampled from p(Y k
i ) and there are N classifiers, i.e., i = 1, . . . , N . The average baseline performance

of classifiers, considering that each of them works independently of the other, is shown in the first
row of Table 1. The (class-dependent) average variance, σk

AV , is defined as the average over all the
variances of classifier. This is in fact not a fusion classifier but the average performance of classifiers
measured in EER. The single-best classifier in the second row chooses the baseline classifier that
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maximises the F-ratio. This is the same as choosing the one with minimum EER because F-ratio is
inversely proportional to EER, as implied by the left part of Eqn. (9).

The derivation of EER of weighted sum (as well as mean) fusion can be found in [11]. The
central idea consists of projecting the N dimensional score onto a one dimensional score via the fourth
equation in Eqns. (3). Suppose that the class conditional scores (prior to fusion) are modeled by a
multivariate Gaussian with mean (µk)T = µk

1 , . . . , µk
N and covariance Σk of N -by-N dimensions. Let

Σk
i,j be the i-th row and j-th column of covariance matrix Σk for k = {C, I}. The linear projection

from N dimensions of score to one dimension of score has the same effect on the Gaussian distribution:
from N multivariate Gaussian distribution to a single Gaussian distribution with mean µk

wsum and

variance (σwsum)2 defined in the fourth row of Table 1 for each class k. The mean operator is derived
similarly with wi = 1

N
∀i. Note that the weight wi affects both the mean and variance of fused scores.

In [13], it was shown mathematically that the EER of mean, EERmean, is always smaller than or
equal to the EER of the average baseline performance (EERAV ). However, there is no evidence that
EERmean ≤ EERbest, i.e., the EER of the best-classifier. In [4], it was shown that σk

wsum ≤ σk
mean,

supposing that the wi∀i are optimal. In [15], when the correlation among classifiers is assumed to be
zero, wi ∝ (EERi)

−1. As a result, this implies that EERwsum ≤ EERmean. The finding in [4] is more
general than that of [15] because the underlying correlation among baseline classifiers is captured by
the covariance matrix. Hence, fusion using weighted sum can, in theory, has better performance than
the mean rule, assuming that the weights are tuned optimally.

The product of two Gaussian-distributed variables is a another Gaussian-distributed variable,
except that it is not normalised. Its associated variance and mean are defined by (σk

prod)
2 and µk

prod

(see the fifth row of Table 1). Note that the computation of mean requires variance to be computed
first. Also, for the product operator, it is necessary to bound Y to be within the range [0, 1], otherwise
the multiplication is not applicable. Consider the following case: two instances of classifier score can
take on any real value. The decision function Eqn. (4) is used with optimal threshold being zero. With
an impostor access, both classifier scores will be negative if correctly classified. Their product, on the
other hand, will be positive. This is clearly undesirable. Although the product rule inherently reduces
the variance, i.e., σk

i ≥ σk
prod|∀i,k, its mean difference also reduces µC

prod−µI
prod. Ideally, is is desirable

to reduce the denominator of F-ratio without decreasing its numerator. Note also that the covariance
matrix does not appear in the EER of the product operator because this operator inherently assumes
that classifier outputs are independent of each other.

The weighted product at first seems slightly cumbersome to obtain. However, one can apply the
following logarithmic transform instead:

log(Y k
wprod) =

∑

i

wi log(Y k
i ), (10)

for any yk
i sampled from p(Y k

i ). This turns out to take the same form as the weighted sum. Assuming
that Y k

i is log-normally distributed, we can proceed the analysis in a similar way as the weighted sum
case.

2.2 Theoretical EER of Order Statistics Combiners

To implement fixed rule order statistics (OS) such as the maximum, minimum and median combiners,
scores must be comparable. Unfortunately, attempting to analyse analytically the EER values as done
in the previous section is difficult without making (very) constraining assumptions.

The first assumption is that the instance of scores must be comparable. If scores of various types
of classifiers are involved for fusion, their range may not be comparable. Hence, score normalisation
is imperative while this pre-processing step is unnecessary in the previous section. The second as-
sumption assumes that scores are i.i.d. In this case, there exists a very simple analytical model1.
Although this model seems too constraining, it is at least applicable to fusion with multiple samples

1This assumption will be removed during experimentation with synthetic data.
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Table 2: Reduction factor γ of variance with respect to the original Gaussian distribution due to
fusion with min, max (the second column) and median (third column) OS combiners for the first five
samples according to [1]. The fourth column is the maximum reduction factor due to mean (at zero
correlation), with minimum reduction factor being 1 (at perfect correlation).

N γ values
OS combiners mean

min, max, median ( 1
N

)
1 1.000 1.000 1.000
2 0.682 0.682 0.500
3 0.560 0.449 0.333
4 0.492 0.361 0.250
5 0.448 0.287 0.200

which satisfies some of the assumptions stated here: scores are comparable; and they are identically
distributed but unfortunately not necessarily independently sampled.

All OS combiners will be collectively studied. The subscript OS can be replaced by min, max and
median. Supposing that yk

i ∼ Y k
i is an instance of i-th response knowing that the associated access

claim belongs to class k. yi has the following model:

yk
i = µk

i + ωk
i ,

where µk
i is a deterministic component and ωk

i is a noise component. Note that in the previous section
ωk

i is assumed to be normally distributed with zero mean. The fused scores by OS can be written as:

yk
OS = OS(yk

i ) = µk + OS(ωk
i )

︸ ︷︷ ︸
,

where i denotes the i-th sample (and not the i-th classifier output as done in the previous section).
Note that µk is constant across i and it is not affected by the OS combiner, i.e., µk

OS = µk|∀k. The
noise component (underbraced term) has zero mean and variance

σk
OS = γσk,

where the γ parameter is a reduction factor and its value can be found in tabulated form for various
noise distributions [1]. A similar line of analysis can be found in [17]. The reduction factor of combining
the first five samples, assuming Gaussian distribution, are shown in Table 2. The smaller γ is, the
smaller the associated EER. The last column of Table 2 shows the reduction factor due to mean. It
can be seen that mean is overall superior.

3 Discussion on Assumptions Made

We gather here a list of assumptions made that will be used in simulating a theoretical comparison of
fixed and trainable fusion classifiers listed in Table 1. For each assumption, we discuss its relevance
and acceptability in practice.

1. Class-dependent gaussianity assumption. Perhaps this is the most severe assumption as
this does not necessarily hold in reality. In [13], 1186 experiments were used to verify this
assumption using the Kolmogorov-Smirnov statistics. Only about a quarter of the data lable
supported the gaussianity assumption. However, to much surprise, the theoretical EER (esti-
mated using the Gaussian assumption) matches closely its empirical counterpart (obtained by
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directly estimating the EER from scores). Hence, the theoretical EER employed here is some-
what robust to deviation from such assumption. This in part may be due to the fact that the
classifier scores are unimodal but not necessarily Gaussian. The Gaussianity assumption is used
mainly because of its easy interpretation. A mixture of Gaussian components could have been
used in place of a single Gaussian. However, this subject requires a dedicated study which
cannot be adequately dealt in the present context.

2. Score comparability assumption. This assumption is only necessary for OS combiners
because of their nature that requires comparison relation “≥”. Scores can be made comparable
by using score normalisation techniques. We propose here two novel and useful techniques.
One is a linear transformation function called F-ratio normalisation and the other is a non-
linear transformation function called margin-score normalisation (both are briefly discussed in
Section A). For the product rule which naturally assumes classifier outputs are probabilistic (in
the range [0, 1]), the min-max normalisation discussed in [5] is further required. These three
normalisation techniques are described in Section A.

3. Class-dependent correlation assumption. Under such assumption, one assumes that the
correlation of client and impostor distributions are correlated, i.e., ρI ∝ ρC . This means that
knowing the covariance of impostor joint distribution, one can actually estimate the covariance
of the client joint distribution. A series of 70 intramodal and multimodal fusion experiments
taken from the BANCA database were analysed in [13] and it was shown that the correlation
between ρI and ρC is rather strong, i.e., 0.8.

Different from studies in [6, 17], we do not assume identical distribution across different classifiers.
In fact, for OS combiners, the analytical EER expression that does not commit such assumption is
cumbersome to be evaluated. Hence, we propose to resolve to simulations, which are relatively easier
to carry out and reflect better the fusion tasks in biometric authentication.

Note that we do not make the independence assumption in the sense that correlation across different
classifiers is non-zero. In fact, the correlation among classifier scores is captured by the covariance
matrix via the definition of correlation, as follows:

ρi,j ≡
Σk

i,j

σiσj

.

This indicates that if one uses a multivariate Gaussian, the correlation is automatically taken care of
by the model.

Expressions in Table 1 can further be simplified if we apply the F-ratio normalisation procedure.
It is aimed at re-shifting µC

i and µI
i so that they are constant for all baseline classifiers i ∈ {1, . . . , N .

As a result, µk
i |∀i ∈ {best, mean, wsum, prod, OS}, will also be constant across different fusion

classifiers. This normalisation does not add any additional information, i.e., the EER before and after
normalisation does not change. As a result, the denominators inside the eer function of Table 1 will
simply be replaced by a constant (see Section A). The next subsection will describe the design of
simulation satisfying the three assumptions mentioned.

4 Experiments with Synthetic Data

We designed a series of 110 synthetic experiment settings. Each experiment setting consists of a fusion
task of two classifier outputs. All three assumptions mentioned in Section 3 are used here, i.e., (1)
the 2D scores will be sampled from a multivariate Gaussian distribution for each class (client and
impostor); (2) scores are comparable, i.e., the mean of client and impostor distributions are fixed to 0
and 1, respectively. However, for the product rule, scores are further normalised into the range [0, 1]
by the min-max normalisation; and finally, (3) the same covariance matrix is used for the client and
impostor distributions.
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In order to evaluate classifier performance, Half Total Error Rate (HTER) is commonly used for
biometric authentication. It is defined as:

HTER =
1

2
(FAR(∆) + FRR(∆))

where the threshold ∆ is chosen to minimise the Weighted Error Rate (WER) at a given pre-defined
α ∈ [0, 1] which balances between FAR and FRR. WER is defined as:

WER(α) = αFAR(∆) + (1 − α)FRR(∆). (11)

To optimise the EER criterion, instead of WER, α = 0.5 is used. We further define a performance
gain variable called βmin, as follows:

βmin =
HTERbest

HTERCOM

where COM is any one of the fusion classifiers/rules under study. When βmin > 1, the particular
fusion classifier is better than the best underlying system.

The first classifier, designed as the better classifier of the two, has a (class-dependent) variance of
0.5 and is kept constant across all synthetic data sets, whereas the second classifier has a variance that
varies with a ratio between 1 to 4 (or absolute variance value between 0.5 to 2). This causes the first
expert to have a HTER between 5.3% and 6.2%, with a mean of 5.8% and the second expert between
5.4% and 22% of HTER with a mean of 15% at the EER point. Furthermore, the correlation value is
varied between 0 and 1, at a step of 0.1 increment.

The simulation results are shown in Figure 1. For figures (a)-(e), the plane with βmin = 1 indicates
the best single classifier, i.e., the baseline performance. As can be seen, the weighted sum classifier
achieves the best overall gain. In fact, its βmin > 1 across all variance ratios and across all correlation
values. The mean rule shows that the performance gain is more than 1 only when the variance ratio is
3 at correlation=0. As correlation increases, to maintain a positive gain, the variance ratio has to be
decreased. This behaviour has been theoretically verified in [13]. The min and max rules follow the
same trend as mean and weighted sum except that their gain is much smaller. There is no significant
difference between the min and max rules. This is somewhat expected following their theoretical EER
models presented in Table 1.

We further examined the weight attributed to the second (weaker) classifier by the weighted sum
classifier to see how the weights evolve with various variance ratios and correlations. This weight can
be interpreted as “reliance on the weaker system”. This is shown in Figure 1(f). On this Cartesian
coordinate system (X is correlation and Y is variance ratio), the point (1,1) implies that the two
classifiers have exactly the same performance. Hence, the weight attributed to classifier 1 or 2 makes
no difference. However, at exact correlation (=1), the weight attributed to classifier 2 (the weaker
one) immediately becomes zero as the variance ratio increases. Furthermore, there is absolutely no
improvement for this case (see in Figure 1(b)). On the other hand, at zero-correlation, the weaker
classifier contributes to fusion (i.e., the weights are not zero). The corresponding performance gain
always increases with decreasing variance ratio (increasingly stronger weak classifier). The product
rule only has performance as good as the single-best classifier at variance ratio=1 while does not match
the rest of the fusion classifiers. Its performance does not evolve with the correlation. This confirms
its theoretical model presented in Table 1. Despite their difference, all fusion classifiers except the
product rule show that low correlation and low variance ratio increase the fusion performance. Note
that no generalisation performance is involved here. In real applications, where there is a mismatch
between training and test data sets, generalisation performance becomes an important concern. This
is treated in the next section with real data.
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Figure 1: Performance gain of HTER, at EER criterion, with respect to the best underlying classifier,
βmin, (the Z-axis) across different variance ratios (of two experts) from 1 to 4 (the X-axis) and different
correlation values from 0 to 1 (the Y-axis), as a result of fusing synthetic scores of two expert systems
(classifiers) assuming class-dependent scores are normally distributed. The scores are combined using
(a) mean, (b) weighted sum, (c) min, (d) max and (e) product fusion classifiers. (f): the weight of
the weaker expert found in the weighted sum after training. This can be thought of as the degree of
“reliance on the weaker expert”.

5 Experiments with Real Data

5.1 Database Settings and Evaluation

The publicly available2 XM2VTS benchmark database for score-level fusion [9] is used. There are
altogether 32 fusion data sets and each data set contains a fusion task of two experts. These fusion
tasks contain multimodal and intramodal fusion based on face and speaker authentication tasks.
For each data set, there are two sets of scores, from the development and the evaluation sets. The
development set is used uniquely to train the fusion classifier parameters, including the threshold (bias)
parameter, whereas the evaluation set is used uniquely to evaluate the generalisation performance.
They are in accordance to the two originally defined Lausanne Protocols [8]. The 32 fusion experiments
have 400 (client accesses) × 32 (data sets)= 12,800 client accesses and 11,800 (impostor accesses) ×
32 (data sets) = 3,577,600 impostor accesses.

The most commonly used performance visualising tool in the literature is the Decision Error Trade-

2Accessible at http://www.idiap.ch/∼norman/fusion
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off (DET) curve [7]. It has been pointed out [2] that two DET curves resulting from two systems are
not comparable because such comparison does not take into account how the thresholds are selected.
It was argued [2] that such threshold should be chosen a priori as well, based on a given criterion. This
is because when a biometric system is operational, the threshold parameter has to be fixed a priori.
As a result, the Expected Performance Curve (EPC) [2] was proposed. This curve is constructed
as follows: for various values of α in Eqn. (11) between 0 and 1, select the optimal threshold ∆ on
a development (training) set, apply it on the evaluation (test) set and compute the HTER on the
evaluation set. This HTER is then plotted with respect to α. The EPC curve can be interpreted
similarly to the DET curve, i.e., the lower the curve, the better the generalisation performance. In
this study, the pooled version of EPC is used to visualise the performance. The idea is to plot a single
EPC curve instead of 32 EPC curves for each of the 32 fusion experiments. This is done by calculating
the global false acceptance and false rejection errors over the 32 experiments for each of the α values.
The pooled EPC curve and its implementation can be found in [9].

5.2 Experimental Results and Discussion

Figure 2 shows the pooled EPC curves of several fusion classifiers/rules under study, each over the
32 XM2VTS fusion data sets. As can be observed, the weighted sum gives the best generalisation
performance. The mean rule follows closely. As expected, both min and max rules have improved
generalisation performance after score-normalisation. For the normalised case (see figures (b)–(d)),
max turns out to outperform min significantly for a large of α, according to HTER significance test
at 90% of confidence [3].

The weight parameters in the weighted sum are optimised using a 1D search procedure with a
constant step-size of 0.05 within the bound [0, 1] since only two classifier outputs are involved. This
strategy has been employed by [5] for user-specific weighting. The advantage of this technique over the
technique assuming zero-correlation, such as [15] or Fisher-ratio [4, Sec. 3.6] is that no assumption is
made about the underlying class-dependent distribution. Support Vector machines with linear kernel
could also have been used instead since it too does not make this assumption. We actually carried out
the two control experiments using the two techniques mentioned and found that their generalisation
performance are significantly inferior to our line search or SVM approach (not shown here). This
is a probable reason why the empirical study conducted here is somewhat different from [16], where
the authors did not find weighted sum significantly outperforms the mean rule, although the same
database was used.

6 Conclusions

In this study, the theoretical and empirical aspects of fixed and trainable fusion classifiers are studied
using the EER. Although this subject is well studied [6, 17, 15, 16], the effects of correlation on
Order Statistics (OS) combiners, e.g, min, max, and median, are largely unknown or rarely discussed
due to intractable analysis. We studied the joint effect of correlation and base-classifier imbalance
performance on EER by simulation. This simulation is based on three major assumptions: class-
dependent Gaussianity assumption, score comparability assumption and class-dependent correlation
assumption. Each assumption are adequately addressed (see Section A). In particular, for the second
assumption, several score normalisation techniques are discussed. Based on 4 fusion classifiers × 4
normalisation techniques (and) × 32 data sets = 512 fusion experiments, we show that weighted sum,
when weights are tuned correctly, can achieve the best generalisation performance, with the additional
advantage that no score normalisation is needed.
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A Dealing with the Score Comparability Assumption in Prac-

tice

Four normalisation techniques were mentioned in the text, namely F-ratio, z-score, min-max and
margin score normalisations. The first three are linear functions whereas the last one is non-linear.
These normalisations are applied on a per classifier basis. The first two have the following form:

ylin = A(y − B)

where B is bias and A is a scaling factor. For F-ratio, they are defined as (see [14]):

B = µI and A = a
µC−µI , (12)

where a is a constant, µk∀k are global mean of client and impostor scores. The term a defines the
“desired distance” between the client and impostor mean. The new impostor mean is 0 whereas the
new client mean is a. Accordingly, the variance of the new distributions are adjusted so that the EER
before and after the transformation does not change. For z-score, they are defined as:

B = µI and A = 1
σI (13)

For min-max normalisation, they are defined as (see [5]):

B = min(y) and A = 1
max(y)−min(y) (14)

The margin-score is computed as follows (see [10]):

ymargin = FRR(y) − FAR(y),

where FRR and FRR are empirically estimated from the data set using Eqns. (6). It has the property
that ymargin is confined in [−1, 1], making it attractive to be interpreted as a confidence measure.
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Figure 2: Pooled EPC curves, each derived from 32 fusion data sets, as a result of applying min, max,
mean and weighted sum fusion, with (a) unnormalised orignal scores, (b) margin-transformed scores,
(c) z-scores and (d) F-ratio transformed scores.


