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Abstract. This study investigates a new confidence criterion to improve fusion via a linear
combination of scores of several biometric authentication systems. This confidence is based on
the margin of making a decision, which answers the question, “after observing the score of a given
system, what is the confidence (or risk) associated to that given access?”. In the context of mul-
timodal and intramodal fusion, such information proves valuable because the margin information
can determine which of the systems should be given higher weights. Finally, we propose a linear

discriminative framework to fuse the margin information with an existing global fusion function.
This framework is simply a “fusion of partial fusion” because it directly modifies the weighing
parameter of an existing fusion function. The results of 32 fusion experiments carried out on
the XM2VTS multimodal database show that fusion using margin (product of margin and expert
opinion) is superior over fusion without the margin information (i.e., the original expert opinion).
Furthermore, combining both sources of information increases fusion performance further.
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1 Introduction

Biometric authentication (BA) is a process of verifying an identity claim using a person’s behavioral
and physiological characteristics. Compared to traditional authentication methods such as keys and
PIN numbers, biometric authentication has the advantages that it is not susceptible to misplacement
or forgetfulness. Unfortunately, its accuracy and reliability still need to be improved to make the
system practical in day-to-day applications.

One way to increase its performance accuracy is to combine several biometric systems. In this
paper, we show how multimodal or intramodal fusion BA system can be improved by using a new
confidence measure based on margin. This quantity can be interpreted as “how confident we are that a
given access is correct after observing the score”. It is bounded between zero and one; when it is zero,
a given access has 50% chance of being correctly classified. The greater the confidence, the higher
the chance that the given access is correct. We show that this margin-derived confidence can be used
in fusion of multimodal biometric systems. The margin-derived confidence can be used to modify the
fixed decision boundary. This is done by a linear combination between the confidence-derived function
and the fixed discriminative function. The former function is adaptive, i.e., it changes after observing
the access scores. In contrast, the latter function is fixed once (hence non-adaptive) and applied to
all accesses.

Improving fusion with quality has already been examined by several authors. Toh et al. [15] fused
fingerprint and speech systems using a modified multivariate polynomial regression function to take
the quality information into account. Bigun et al. [3] also fused fingerprint and speech systems but
using a statistical model (that reconciles expert opinions) modified to take the quality into account.
Fierrez-Aguilar [5] fused fingerprint and speech systems, with quality derived from fingerprint, using
a modified Support Vector Machine algorithm. Garcia-Romero et al. [7] considered quality in speaker
authentication task using the first formant. Fusion is done so as to favour speech frames with high
quality. Hence, instead of taking the average Log-Likelihood Ratio (LLR) over the entire utterance
frames, a weighted LLR (by quality) is used. All these studies provide empirical evidences that quality
information can improve fusion performance. We propose to use a quality index based on margin. This
margin is a function of False Acceptance and False Rejection Rates, which themselves are estimated
from a set of expert scores. The main advantage of margin-derived quality is that no additional (and
often independent) system is needed to estimate the quality, as compared to the previously mentioned
approaches.

Section 2 presents the proposed idea of margin and compares it with existing margin definitions
in the literature. Section 3 presents how confidence can be integrated with existing fusion functions.
Section 4 presents briefly the 32 fusion problems based on the XM2VTS database and Section 5
discusses a pooled EPC curve as a performance visualisation tool. Experiments are reported in
Section 6. This is followed by conclusions in Section 7.

2 Margin As Confidence

Given an acquired biometric feature x, an opinion of a BA system y(x) as a function of x and a preset
threshold ∆, a biometric system makes its decision based on the following decision function:

F (x) =

{
accept if y(x) > ∆
reject otherwise.

(1)

Since x is present in y(x) and variables derived from it, we simply write y instead of y(x). The
system may make two types of mistakes: false acceptance (FA) and false rejection (FR) as a function
of threshold ∆. By tracing this function empirically from a development set, and normalising them
using the total number of impostor and client accesses, respectively, one obtains the false acceptance
rate (FAR) and false rejection rate (FRR) curve as a function of threshold ∆. FAR and FRR are
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Figure 1: (a) FAR and FRR as a function of the threshold in the score space. (b) The derived margin
based on (a).

defined as follows:

FAR(∆) =
number of FAs(∆)

number of impostor accesses
, (2)

FRR(∆) =
number of FRs(∆)

number of client accesses
. (3)

A commonly used point to examine the quality of performance is to evaluate the value FAR = FRR.
This is the Equal Error Rate (EER) point and it assumes that the costs of FA and FR are equal, and
that the class prior probabilities (of client and impostor distributions) are also equal.

The empirical procedure to find ∆ that satisfies the EER criterion (on the training set) is:

∆∗ = arg min
∆

|FAR(∆) − FRR(∆)| . (4)

We define the margin as:
M(∆) = |FAR(∆) − FRR(∆)|. (5)

By replacing ∆ by y, we effectively evaluate the margin of the output y. FAR, FRR and margin are
shown in Figure 1. The margin derived this way simply tells us how much confident we are given an
opinion y. The further it is from the decision boundary ∆∗, the more confident we are. Note that
because FAR and FRR are cumulative density functions, they are confined in the range [0, 1]. Hence,
the margin defined here is also confined in the range [0, 1].

Note that the margin defined here is different from the concept of margin in the boosting [6] or
Vapnik’s margin slack variable [16]. Several definitions of margin are defined in [4, Sect. 2]. Suppose
that the target output is tp and the output of a system is yp for the p-th example. tp takes on {−1, 1},
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each representing a class (impostor or client here). Using this notation, margin in boosting for a given
example p is:

margin(yp) = (yp − ∆∗)
︸ ︷︷ ︸

tp, (6)

whereas, Vapnik’s margin slack variable for a given example p is:

ξp = max(0, γ − (yp − ∆∗)
︸ ︷︷ ︸

tp), (7)

where γ > 0 is known as a target margin and is fixed a priori. Note that in our notation, the
subtraction in the underbraced term yp − ∆∗ is to make sure that the decision boundary has a value
of 0 (normally, the ∆∗ has already been absorbed by the output of the system as a bias term; in
our context, this bias term corresponds to −∆∗). Briefly, margin(yp) measures how far an example
is from the decision boundary. The further it is, the better. Negative margin in this case implies
wrong classification of example p. In Vapnik’s margin, ξp measures how much example p fails to
have a margin of γ from the hyperplane. If ξp > γ then example p is misclassified by yp − ∆∗. The
difference between Vapnik’s margin slack variable and margin in boosting is that the former takes
the target margin into account whereas the latter does not. Both of these margin definitions can
only be calculated supposing that the target output (class-label) is known. In fact, they are used to
select examples that are difficult to classify They are only important during the training phrase. Our
proposed definition of margin does not require the target output. Furthermore, it is used exclusively
during testing (although it is constructed from a labeled training set). Perhaps the most remarkable
difference is that this margin is based on FAR and FRR, with minimum at EER. The aforementioned
margins are also valid but they do not optimise EER directly. Despite their different usages, one
similarity among all these margins is that they all have to be derived from labeled data.

In the next section, we will propose a method to incorporate the margin-derived confidence measure
into an existing fusion function.

3 Fusing a priori Weights with Confidence

3.1 General Fusion Function

The most used form of fusion function in biometric authentication is perhaps a linear combination of
several expert opinions passed through an activation function. Suppose y′

j is the j-th opinion and αj

is the weight associated to y′

j , respecting the constraint that
∑

j αj = 1. The combined opinion of M

base experts, yCOM can be written as:

yCOM = f





M∑

j=1

αjy
′

j



 (8)

where f is an activation function. Suppose that there are N biometric systems but there are M ≥ N

opinions. The number of opinions can be more than the number of systems because we assume here
that each system can give more than one opinion, derived in one way or another. For instance, for
the case of fusing two systems with output y1 and y2, we could have:

y′

j ∈ {y1, y2, y
2

1 , y
2

2 , y1y2, 1}, (9)

where 1 is a bias term, and

f(z) =
1

1 + exp[−a(z − b)]
, (10)

which yields a polynomial logistic regression function (with a = 1, b = 0). The full expansion of
polynomial is exponential with respect to its degree. In [14], a reduced polynomial expansion is used
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to reduce the complexity (the degree of freedom of the classifier) and to make it practical enough for
fusion problems. When y′

j is defined as:

y′

j ∈ {yi|i = 1, . . . , N} (11)

and using Eqn. (10) with a = 1, b = 0, one obtains a logistic regression function [17] In this study,
we concentrate on the linear function f , i.e., f(z) = z (a linear function) and establish a means to
combine margin-derived confidence with a fixed discriminative function. We will show how the form
of fusion in Eqn. (8) occurs naturally.

3.2 Fusion Function With Quality

In the literature, to the best of our knowledge, there are two forms to integrate the quality information
with an a priori weight that modifies αi in Eqn. (8). Suppose that wj is the a priori weight (found
by optimising Equal Error Rate, for instance) and qj is the quality associated to y′

j . The two forms
that incorporate the quality information are as follow:

αj ∝ wj + qj (12)

and
αj ∝ wj × qj (13)

Note that in the absence of the quality information, we have αj ∝ wj . The usage of Eqn. (12) can be
found in [15] using a reduced polynomial expansion of logistic regression function, i.e., using Eqn. (9)
for the case of polynomial degree 2 and Eqn. (10). In the mentioned work, only polynomial up to
degree 3 was examined. Experiments were conducted on fusion of fingerprint and speech biometrics
with quality information obtained only from the fingerprint.

The usage of Eqn. (13) was found in [18, 13]. In [18], a speech expert (j = 1) and a lip expert
(j = 2) were fused. Suppose that yk

j is the j-th opinion given that the access is k = {C, I}, i.e., client

or impostor. Suppose that yk
j is generated from a normal distribution with mean µk

j and variance

(σk
j )2, i.e., yk

j ∼ N
(
µk

j , (σk
j )2

)
. In [18], w1 is defined as:

w1 =
ζ2

ζ1 + ζ2

(14)

where,

ζj =

√

(σC
j )2

NC
+

(σI
j )2

NI
(15)

and NC is the total number of client accesses and NI is the total number of impostor accesses. By
the summation constraint, w2 = 1 − w1. ζj is called the standard error. In [18], it was assumed that
this error gives relative discrimination of an expert. High ζj indicates that expert j has high class
dependent variance and hence, lower performance. As a result, its weight is lowered and the other
expert’s weight is increased1. qj is defined as:

qj ∝ |MC
j (yj) −MI

j (yj)|, (16)

where

Mk
j (yj) =

(yj − µk
j )2

(σk
j )2

(17)

for k = {C, I} and
∑

j qj = 1. Note that in this context, only the speech expert (j = 1) can be
corrupted by noise whereas the lip expert (j = 2) stays intact. It was demonstrated experimentally [18]

1Although this criterion is valid, examining class-dependent variance is not sufficient; the mean difference is an
important factor [12].



6 IDIAP–RR 04-63

that under clean conditions, q1 is relatively large (as compared to q2) whereas under noisy conditions,
q1 is relatively small.

In [13], face and speech experts are fused and the speech expert is susceptible to noise whereas the
face expert remains intact. The quality of the speech signal is estimated by using a statistical model
(Gaussian Mixture Model) from the unvoiced part of speech frames. The unvoiced part of speech
was obtained from the speech features right before an utterance begins. The output of the model
(Log-Likelihood Ratio, LLR) is normalised into the range [0, 1] by using a sigmoid function, as shown
in Eqn. (10). a and b were tuned by heuristics, such that qj is close to one for good quality speech
and close to 0 for bad quality speech. According to the authors, the likelihood normalisation step
is necessary because the normalised LLR is used directly to influence the a priori weight. wj |∀j are
estimated using standard methods to minimise Equal Error Rate (EER), to be discussed in the later
section.

We will use the method in Eqn. (12) because, as will be shown, it can be used to fuse different
information sources. Furthermore, the multiplicative effect in Eqn. (13) can adversely influence αj

drastically as compared to Eqn. (12). To begin with, we consider a linear function of f , i.e., f(z) = z.
We wish to fuse existing weight wi with quality qi for all i = 1, . . . , N . Hence, αi can be written as:

αi = β1,iwi + β2,iqi (18)

where βi control the contribution between the a priori weight wi and the quality information qi. Using
f(z) = z, Eqns. (8) and (18), we obtain:

yCOM =
∑

i

(β1,iwj + β2,iqi)yi

=

N∑

m=1

(

β1,mwm
︸ ︷︷ ︸

ym
︸︷︷︸

)

+

N∑

n=1

(

β2,n
︸︷︷︸

qnyn
︸︷︷︸

)

(19)

where the four under-braces in Eqn. (19) can be written in the form of Eqn. (8). with y′

j defined by:

y′

j ∈ {yi, qiyi|i = 1, . . . , N}

Hence, fusion of a priori weight with the quality information can be performed by a linear combination
of yi and qiyi, for all i. The corresponding weights αj can be found using standard methods such
as Fisher-ratio or linear regression. The use of non-linear solutions is direct. For instance, one
can use a Multi-Layer Perceptron with y′

j |∀j as an input vector. Standard Support Vector Machine
(SVM) algorithm with a polynomial kernel can also be used to classify the secondary features, thus,
eliminating the need to create a dedicated classifier to fuse the quality information, as in [15] or to
apply heuristics, as in [18, 13]. Because the input to the classifier are scores and partially fused scores
(with quality information in this case), we call our technique “fusion of partial fusion”.

4 Database

The XM2VTS database [9] contains synchronized video and speech data from 295 subjects, recorded
during four sessions taken at one month intervals. On each session, two recordings were made, each
consisting of a speech shot and a head shot. The speech shot consisted of frontal face and speech
recordings of each subject during the recital of a sentence. The database is divided into three sets: a
training set, an evaluation set and a test set. The training set was used to build client models, while
the evaluation set was used to compute the decision thresholds as well as other hyper-parameters used
by classifiers and normalisation. Finally, the test set was used to estimate the performance. The 295
subjects were divided into a set of 200 clients, 25 evaluation impostors and 70 test impostors. There
exists two configurations or two different partitioning approaches of the training and evaluation sets.
They are called Lausanne Protocol I and II (LP1 and LP2). The most important thing to note here
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is that there are only 3 samples in LP1 and 2 samples in LP2 for client-dependent adaptation and
fusion training. Instead of reimplementing base experts and applying them on this database, we used
scores from [10]. The score files are made publicly available and are documented in [11]2. There
are altogether 7 face experts and 6 speech experts for LP1 and LP2, respectively. By combining 2
baseline experts at a time according multimodal or intramodal fusion problems, 32 fusion experiments
are further identified. The 13 baseline experiments have 400 × 13 = 5,200 client accesses and 11800 ×
13 = 1,453,400 impostor accesses. The 32 fusion experiments have 400 × 32 = 12,800 client accesses
and 11,800 × 32 = 3,577,600 impostor accesses.

5 Evaluation Using Pooled EPC Curves

Perhaps the most commonly used performance visualising tool in the literature is the Decision Error
Trade-off (DET) curve [8]. It has been pointed out [1] that two DET curves resulting from two
systems are not comparable because such comparison does not take into account how the thresholds
are selected. It was argued [1] that such threshold should be chosen a priori as well, based on a given
criterion. This is because when a biometric system is operational, the threshold parameter has to be
fixed a priori. As a result, the Expected Performance Curve (EPC) [1] was proposed. We will adopt
this evaluation method, which is also in coherence with the original Lausanne Protocols defined for
the XM2VTS database. The criterion to choose an optimal threshold is called weighted error rate
(WER), defined as follows:

WER(α, ∆) = αFAR(∆∗) + (1 − α) FRR(∆∗), (20)

where FAR and FRR are False Acceptance Rate and False Rejection Rate, respectively. Note that
WER is optimised for a given α ∈ [0, 1]. Let ∆∗

α be the threshold that minimises WER on a
development set. The performance measure tested on an evaluation set at a given ∆∗

α is called Half
Total Error Rate (HTER), which is defined as:

HTER(α) =
FAR(∆∗

α) + FRR(∆∗

α)

2
. (21)

The EPC curve simply plots HTER versus α, since different values of α give rise to different values
of HTERs. The EPC curve can be interpreted in the same manner as the DET curve, i.e., the lower
the curve is, the better the performance but for the EPC curve, the comparison is done at a given
cost (controlled by α). Furthermore, one can plot a pooled EPC curve from several experiments. For
instance, in order to compare two methods over M experiments, only one pooled curve is necessary.
This is done by calculating HTER at a given α point by taking into account all the false acceptance
and false rejection accesses over all M experiments. The pooled FAR and FRR across j = 1, . . . , M

experiments for a given α ∈ [0, 1] is defined as follow:

FARpooled(α) =

∑M

j=1
FA(∆∗

α(j))

NI × M
, (22)

and

FRRpooled(α) =

∑M

j=1
FR(∆∗

α(j))

NC × M
, (23)

where ∆∗

α(j) is the optimised threshold at a given α, NI is the number of impostor accesses and NC

is the number of client accesses. FA and FR count the number of false acceptance and the number of
false rejection at a given threshold ∆∗

α(j). The pooled HTER is defined similarly as in Eqn. (21).

2Accessible at http://www.idiap.ch/∼norman/fusion
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Figure 2: Pooled EPC curves of fusion experiments using original expert opinion (labeled as “orig”),
product of expert opinion with margin (labeled as “margin”), and combination of both information
(labeled as “margin+orig”), all using the mean operator. According to the HTER significant test,
the “margin+orig” curve is always better than the “orig” curve, at different α, at 95% of confidence.
These experiments were carried out on the XM2VTS database using 32 intramodal and multimodal
fusion datasets, and each dataset contains the scores of two experts.

6 Experimental Results

Figure 2 shows a pooled EPC curve calculated from all 32×3 fusion experiments using original expert
opinion (y′

j ∈ {yi|∀i}), margin (y′

j ∈ {M(yi)yi|∀i}) and both (y′

j ∈ {yi,M(yi)yi|∀i}). Note that for

all these experiments, αj |∀j were set to be equal. This reduces the fusion into the mean operator3.
As can be seen, the fusion with margin is better than the one using only the original expert opinions.
Combining the two actually improves the performance even further. In fact, this improvement is
significantly better than fusion using the original expert opinions across different α values according
to the HTER significant test [2] with 95% of confidence. As a control experiment, we also performed
fusion with y′

j ∈ {yi,M(yi)|∀i} using weighted sum. As expected, this approach does not improve the
performance because M(yi) does not contain any discriminative information. As a result, this control
experiment is worse than using y′

j ∈ {yi|∀i} with EPC ranging between 1.5% and 3% of HTER (not
shown here).

3In this database, weighted sum fusion did not provide better performance than the mean operator.
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7 Conclusion

In this study, we proposed to use margin as a measure of confidence. When fusing two system opinions,
their derived margins provide a relative information to which system is more important. This margin
definition has the property that it is confined in the range [0, 1], because it is derived from the distance
between two cumulative density functions. Hence, margin can be used as a quality index. To the best
of our knowledge, using margin to boost fusion has not been found in the literature yet. The second
contribution of this work is the analysis of fusion function and how the quality information can be
integrated with a priori weights of an existing fusion function. Suppose that yi is the i-th opinion of
an expert system and qi is the associated quality. The fusion problem now can be treated as a fusion
of {yi, qiyi|∀i}. This has the same effect as modifying the a priori weight by adding qi directly. We
call our technique “fusion of partial fusion” because the product yiqi is now treated as an opinion
itself, to be used for the next level of fusion. 32×3 intramodal and multimodal fusion experiments
were carried out on the XM2VTS multimodal database. Using pooled EPC curves (which summarise
over each of the 32 experiments), we show that fusion using the opinion yiqi is better than using the
original opinion yi. Furthermore, combining the two, i.e., {yi, yiqi} improves the performance even
further, and significantly, over different operating costs.
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