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Abstract: The purpose of this paper is to investigate the behavior of HMM2 models for the recognition of noisy
speech. It has previously been shown that HMM2 is able to model dynamically important structural information
inherent in the speech signal, often corresponding to formant positions/tracks. As formant regions are known to be
robust in adverse conditions, HMM2 seems particularly promising for improving speech recognition robustness.
Here,we review differentvariantsof theHMM2 approachwith respectto their applicationto noise-robustautomatic
speechrecognition.It is shown thatHMM2 hasthepotentialto tackletheproblemof mismatchbetweentrainingand
testing conditions, and that a multi-stream combination of (already noise-robust) cepstral features and formant-like
features (extracted by HMM2) improves the noise robustness of a state-of-the-art automatic speech recognition sys-
tem.
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1 INTRODUCTION
HMM2 is a particular mixture of hidden Markov models (HMM), where a secondary HMM, working along
thefrequency dimensionof speech,is usedto estimatelocalemissionprobabilitiesof aconventional,temporal
HMM. The resulting rather flexible model structure has numerous potential advantages, such as a sophisti-
catedmodelingof theunderlyingtime/frequency structureof thespeechsignalandanimplicit non-linearfre-
quency warping,leadingto systemswhich mayautomaticallyperformformanttrackingaswell asvocal tract
normalization for speaker adaptation.

Recently, considerableprogresshasbeenmadewith HMM2 systems,especiallyconcerningtheformanttrack-
ing aspect.It hasbeenshown that theHMM2 cansegmenta speechsignalalongthefrequency axis into high
and low energy regions respectively. Therefore, the HMM2 segmentation follows roughly formant-like struc-
tures of the speech signal. The fact that formant structures have successfully been used as features for auto-
matic speech recognition (ASR) before ([2],[7]) motivated us to similarly use this HMM2 frequency
segmentation as features for speech recognition.

In thispaper, wefocusontheapplicationof HMM2 to therecognitionof speechin noisyconditions.Two vari-
ants of using HMM2, namely directly as a decoder for speech recognition and, alternatively, as a feature
extractor, are investigated under different conditions. It is demonstrated that HMM2 is in both cases able to
outperformconventionalHMM systemsin thecaseof heavily degradedsignals,giventhesame(spectral)fea-
tures. When using HMM2 features in a multi-stream approach to complement noise-robust mel-frequency
cepstralcoefficients(includingspectralsubtractionandcepstralmeansubtraction,in thefollowing referredto
as MFCC-SS), speech recognition results could again be improved significantly.

In thefollowing section,webriefly review theHMM2 approachandits variants,includingour previouswork.
Then, we address the problem of noise robustness, and finally present speech recognition results.

2 HMM2
HMMs are quite powerful statistical models which are used to represent sequential data, e.g. a sequence of
acoustic vectors in speech recognition. As each acoustic vector can itself be considered as a fixed length
sequence of its components, another HMM can be used to model this feature sequence. In the HMM2
approach, a primary HMM models temporal properties of the speech signal (just as in HMMs conventionally
applied to speech recognition), while a secondary, state-dependent HMM works along the frequency dimen-
sion. In fact, the secondary HMM acts as a likelihood estimator for the primary HMM, a function accom-
plished by Gaussian mixture distributions (GMMs) or artificial neural networks in other systems. The state
emission distributions of the secondary HMM are then modeled by low-dimensional GMMs. Consequently,
HMM2 is a generalization of the standard HMM/GMM system (which it includes as a particular case).

2.1 Motivation

HMM2 providesa very flexible approachto modelingtheinherentcharacteristicsof thespeechsignal.Poten-
tial advantages of the HMM2 approach include:

• Automaticnon-linearspectralwarping.In thesamewaytheconventionalHMM doestimewarpingand
time integration, the feature-based HMM performs frequency warping and frequency integration.

• Dynamicformanttrajectorymodelling.As shown previously [5], theHMM2 structurehasthepotential
to extractsomerelevantformantstructureinformation,which is oftenconsideredasimportantto robust
speech recognition.
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2.2 Features for HMM2

For the motivations described in the previous section to hold, it is preferable to use features in the spectral
domainfor HMM2. Thisprovidesuswith thephysicalinterpretationof thesecondaryHMM2 statesmodeling
spectralregionsof differentenergy levels,andpermitsinterpretingthesegmentationbetweentheseregionsas
formant-like structures.We herechosenormalizedfrequency filteredfilterbankcoefficients(FF2,[3]), asthey
are rather uncorrelated spectral features (apart from correlation near the diagonal, i.e. between coefficients in
adjacent frequency bands). Moreover, their performance in conventional HMM system is almost competitive
with MFCC-SSin cleanspeech(however, in additivenoisesignificantdegradationswereobservedfor theFF2
features).

A conventional spectral feature vector is split up into a sequence of subvectors, called secondary feature vec-
tors.As illustratedin Fig. 1, a secondaryfeaturevectorasusedfor theHMM2 systemis thuscomposedof an
FF2coefficient (cs), its first andsecondorderderivatives(dsandas) anda furthercoefficient reflectingthefre-
quency position of that vector (fs). Supplementing the 3-dimensional secondary feature vector by such a ‘ fre-
quency index’ has shown significant benefits for speech recognition performance, allowing a better modeling
of formantpositions(thereaderis referredto [6] for moredetailson thefrequency index, its motivations,real-
ization and performance improvements).

2.3 HMM2 variants

In thefollowing, wedescribetwo variantsof HMM2 ontheapplicationlevel. Speechrecognitionwith HMM2
is done by the usual Viterbi decoding, and ASR performance can directly be measured by the obtained word
error rate (WER). In this case, HMM2 is applied as decoder directly for speech recognition, just in the same
way as a conventional HMM, as is visualized in variant (a) of Fig 2.

A by-productof Viterbi decoding(in additionto thesequenceof recognizedwords)is thesegmentation.While
for conventionalHMMs this segmentationis limited to thetemporaldomain,in thecaseof HMM2 we obtain
an additional segmentation along the frequency dimension, estimated (for each temporal feature vector) from
the transitions between the secondary HMM states. Apart from using HMM2 directly for speech recognition,
we canusetheViterbi segmentationobtainedat eachtime stepasfeaturesfor a conventionalHMM. Further-
more,a temporalindex canbecalculatedfrom thesegmentationbetweentheprimaryHMM2 states,whichhas
shown to be a beneficial additional component for the new feature vector. Variant (b) of Fig. 2 shows how an
HMM2 is only employed for a first recognition pass in a 2-pass system, providing the (temporal and fre-
quency) segmentation features for the second pass. These features are in the following called ‘HMM2 fea-

Figure 1: (a) Feature vectors as usedin the secondaryHMM composedof
coefficientscs, their delta ds and acceleration coefficientsas, as well as the
frequencycoefficient fs. In (b) it is shownhowthe ‘frequencycoefficients’are
obtained.
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tures’ (Therefore, the term ‘HMM2 features’ refers to the segmentation features obtained from the HMM2,
not to be confused with the spectral features usedfor HMM2)

2.4 Building from previous results

Previously, promisingresultswereobtainedwith bothvariantsof HMM2. In [6], we reportedword errorrates
(WER) of 14.0%(on thecleanNumbers95database,[1]) for variant(a).As describedabove,herethesecond-
ary HMM actedaslikelihoodestimator. WhenusingtheHMM2 in a 2-passsystemasfeatureextractor(vari-
antb), we obtaineda WER of 15.0%with only 4-dimensionalfeatureson thesametask.However, sucha full
HMM2 system was previously not tested on noisy speech.

In [5], we treated a simplification of variant (b), employing a 2-pass system where a single secondary HMM
was used as feature extractor. In fact, the parameters of all secondary HMMs were shared throughout all the
primary HMM states. This model was trained on all the training data (regardless of the labeling) and used to
extract formant-like structures (in form of the frequency segmentations obtained from the Viterbi algorithm).
These were subsequently used as additional features (to complement noise-robust MFCC-SS) for standard
HMM, where an improved robustness in noisy speech was observed. In this paper, we will use segmentation
features obtained from a full HMM2 as additional features to supplement our noise-robust MFCC. For each
time step, the new HMM2 features therefore depend on the present HMM2 primary state (given through the
most likely temporal state sequence of the HMM2 feature extractor, given the data), and are therefore class-
dependent.

In the following, we will investigate the behavior

• of a full HMM2 (asopposedto a simplified version,wherethe parametersof all secondaryHMMs
were shared throughout the system, as in [5])

• in noise (as opposed to [6], where we investigated a full HMM2, but in clean speech only).

Both variants of applying HMM2 are investigated, and it is shown that:

• HMM2 (whenuseddirectly asa decoderfor speechrecognition)shows a higherrobustnessto heavily
degraded noise, as compared to a conventional HMM, given the same (spectral) features, and that

• HMM2 features(i.e. the structuralinformationextractedfrom the Viterbi segmentation)provide dis-
criminant information and lead to a significantly improved noise robustness when combining MFCC-
SS and HMM2 features in a multi-stream approach.

In the following, we will discuss why HMM2 might be particularly useful for noisy speech, before giving
more detailed speech recognition results.

Figure 2: HMM2 system used directly for speech
recognition (a), and for featuresextraction (b). For (b), a
secondrecognition pass,using a conventional HMM, is
performed.
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3 HMM2 AND NOISE ROBUSTNESS
Thereareseveralreasonsto believe thatHMM2 is particularlypromisingin thepresenceof noise,for boththe
straight application of HMM2 as decoder (see the first bullet below) and subsequently the application of
HMM2 as a feature extractor (see bullets 1 and 2 below).

• Firstly, it is oftenacknowledgedthatspectralpeaks(formants)shouldbemorerobustto additivenoise,
sincetheformantregionswill generallyexhibit a largesignal-to-noiseratio. In many noisyconditions,
the overall structure of the speech signal, i.e. the spectogram’s partitioning into high- and low energy
regions, may largely be unaffected by the noise. As HMM2 relies on these spectral structures, this
model may be more tolerant to a large number of distortions.

• Secondly, featuresextractedfrom theHMM2 frequency segmentationoftencorrespondto formant-like
structures. It is generally agreed that formants are perceptually important features and that they might
be robust e.g. against noise and mismatch between training and testing conditions [7]. Moreover,
HMM2 formant-like featureshavealreadyshown goodspeechrecognitionperformances[6]. If, for the
reasons described above, the HMM2 segmentation obtained from the Viterbi algorithm is relatively
invariablefor differentnoiseconditionsgivenacertainspeechunit, andthereforefollowstherespective
formant structures even for highly degraded speech, HMM2 features will show a good robustness to
noise.

4 EXPERIMENTS
Experimentswerecarriedouton theOGI Numbers95corpus[1], corruptedwith 3 kindsof additivenoises1 on
4 different signal-to-noise ratios (SNR). 12 FF2 coefficients (including one energy coefficient), additionally
normalized, were used as (spectral) features. The 4-dimensional feature vectors consisted of a coefficient, its

1. The noises were partly drawn from the Noisex database [4]. However, the car noise was provided
by the IDIAP project partner DaimlerChrysler, which we gratefully acknowledge.
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Figure 3: HMM vs. HMM2 performancefor frequency
filteredfilterbankfeatures,illustratedby thedottedandsolid
lines respectively. Errorbars for HMM WERshowthe 95%
confidenceintervals. The resultsare for clean speech and
car noise at different SNR.
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first and second order time derivatives and its frequency coefficient (here indices from 1 to 12). The HMM2
wasrealizedwith HTK [8]. Final modelswere80 triphones,eachconsistingof 3 temporalstates.All second-
ary HMMs had 4 states connected in a looped top-down topology, and an additional non-looped state for the
energy. ThissystemwastrainedgloballyusingtheEM algorithm,oncleanspeechonly, andViterbi-basedrec-
ognition was performed under varying conditions (clean and all noises).

4.1 Results for HMM2 decoder

To realistically compare the performance of the HMM2 system (variant a in Fig. 2) to that of a conventional
HMM, we did preliminary tests on both models given the same features (i.e., spectral FF2). Fig. 3 shows
results for one noise condition, errorbars indicate the 95% confidence interval. It can be seen that the differ-
encesin theperformanceof these2 modelsarestatisticallysignificant.While HMM2 is not competitive with
conventionalHMMs in cleanconditionsor noisyspeechwith ahighSNR,for heavily degradednoiseit easily
outperforms the conventional HMMs. In fact, HMM2 is better able to handle the mismatch between training
and testing conditions (as training was done on clean speech only). This was confirmed on all other tested
noise conditions. Although the obtained results (for both HMM and HMM2 with FF2 features) are not com-
petitive with the state-of-the-art performance (obtained with conventional HMMs, but employing MFCC-SS
as features), we feel that this result shows a good potential for applying HMM2 in adverse conditions.

4.2 Results for HMM2 features

In the following, the segmentation features obtained from the HMM2 Viterbi decoding (variant b) are evalu-
ated in noisy conditions. Fig. 4 visualizes the spectograms of FF2 features for the same speech segment (in
clean conditions and disturbed with different additive noises), along with the respective HMM2 segmenta-
tions.Althoughthesegmentationsvaryconsiderably, ageneralcommonstructureis visible throughoutthedif-
ferent conditions. Comparing the HMM2 decoder performance with the recognition rates of HMM2 features,
it can be stated that the recognition results obtained from the HMM2 features are slightly inferior to those
obtaineddirectly from theHMM2 decoder(but still significantlydifferentfrom theconventionalHMM results
shown in Fig. 3) throughoutthedifferenttestingconditions.In fact,theHMM2 decoderperformanceseemsto
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Figure 4: Temporal and frequency HMM2 segmentation for the same
speech segment of the N95 database, for clean speech (upper left) and
for speech disturbed with 3 different additive noises at SNR=0.
Underlying, the FF2 features are displayed (dark colors correspond to
high energy regions). The vertical lines correspond to the temporal, the
horizontal ones to the frequency segmentation.
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beanupperlimit for speechrecognitionusingHMM2 features.Thisconfirmsour resultsoncleanspeech(see
section 2.4). However, HMM2 features still have their justification. Firstly, given the crudeness of these fea-
tures,they performextremelywell (asstatedbefore,for cleanspeech,we obtaina WER of 15.0%).Secondly,
it is straight-forward to combine HMM2 features with noise-robust state-of-the-art features.

We tested the combination of HMM2 features with MFCC-SS in a multi-stream approach. It has been shown
that, while there is a lot of correlation between the 4 dimensions of the HMM2 features themselves, there is
notmuchcorrelationbetweenthetwo differentfeaturestreams.Furthermore,giventhecharacteristicsanddif-
ferent physical interpretation of these two feature streams, it is reasonable to assume that they provide differ-
ent and supplementary acoustic cues.

Table1 givesanoverview of speechrecognitionresultsfor HMM2 features,MFCC-SSandtheirmulti-stream
combination. In fact, the baseline MFCC-SS speech recognition results were improved for all tested condi-
tions. The obtained results are statistically significantly better than the MFCC-SS only performance (with
more than 98% confidence).

As compared to our previous, simplified HMM2 features ([5], described in section 2.4), recognition rates on
theHMM2 featureshave increasedby morethan50%,but resultson therespectiveHMM2 featurescombined
with MFCC-SS were not significantly improved. This may indicate that, although by themselves the new
HMM2 featuresperformmuchbetter, thereis notmuchmorecomplementaryinformationto theMFCC-SSas
already seen in the old and simplified features.

5 CONCLUSION
This paper evaluated two variants of the HMM2 system in noisy speech. Performance improvements were
obtained for both HMM2 as decoder as well as feature extractor in heavily degraded noise, as compared to
resultsonconventionalHMMs usingthesamefeatures.However, our HMM2 performanceseemsstill limited
by thechoiceof spectralFF2features,whichcannotcompetewith robustMFCC-SSin mostconditions.Find-
ing more competitive spectral features will be crucial for future HMM2 research. On the positive side, the
state-of-the-artMFCC-SSspeechrecognitionresultscouldbeimprovedwhensupplementingcepstralfeatures
with our HMM2 features in a multi-stream approach.
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