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Abstract: HMM2 is a particular hidden Markov model where state emission probabilities of the temporal (primary)
HMM aremodeledthrough(secondary)state-dependentfrequency-basedHMMs [12]. As shown in [13], asecondary
HMM canalsobeusedto extractrobustASRfeatures.Here,wefurtherinvestigatethisnovel approachtowardsusing
a full HMM2 as feature extractor, working in the spectral domain, and extracting robust formant-like features for
standard ASR system. HMM2 performs a nonlinear, state-dependent frequency warping, and it is shown that the
resultingfrequency segmentationactuallycontainsparticularlydiscriminantfeatures.To further improve theHMM2
system, we complement the initial spectral energy vectors with frequency information. Finally, adding temporal
information to the HMM2 feature vector yields further improvements. These conclusions are experimentally vali-
dated on the Numbers95 database, where word error rates of 15%, using only a 4-dimensional feature vector (3 for-
mant-like parameters and one time index) were obtained.
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1 INTRODUCTION
In anattemptto bettermodelthejoint temporal/frequency structureof speech,we recentlyintroduceda novel
HMM architecture,referredto asHMM2 [12]. HMM2 canbeunderstoodasanHMM mixtureconsistingof a
primary HMM, modeling the temporal properties of the speech signal, and a secondary HMM, modeling the
frequency properties.A secondaryHMM is in factusedat thelevel of eachstateof theprimaryHMM to esti-
matelocalemissionprobabilitiesof acousticfeaturevectors(conventionallydoneby Gaussianmixturemodels
(GMM) or artificial neuralnetworks(ANN)). Consequently, a conventional(temporal)acousticfeaturevector
is consideredasa fixedlengthsequenceof its components(or subvectors),which hassupposedlybeengener-
atedby thesecondaryHMM. A similarapproachhaspreviouslyshown somesuccessin computervision [4, 9,
11].

As describedin [14], the HMM2 approachhasnumerouspotentialadvantages,suchasimplicit dynamic
formant trajectory tracking and automatic spectral warping, possibly permitting easy adaptation to different
speakersandconditions.However, HMM2 hasnotyetshown competitive resultsin speechrecognition,which
can be attributed to (1) a restricted modeling power concerning correlations of feature vector components as
compared to GMM and (2) a reduced discriminability due to the ‘blurring’ of important information (such as
thepositionsof spectralpeaks)[14]. Here,we introduceanew extensionof HMM2, whichreliesonadditional
frequency information in the feature vectors, thereby solving the second problem stated above.

On theotherhand,it wasfoundthatthesegmentationsobtainedby a secondaryHMM representdiscrimi-
nant features for speech recognition, which are related to formant positions [13]. Whereas in this previous
work a single secondary HMM was used for feature extraction (basically sharing parameters across all pri-
mary HMM states of the HMM2), in the present paper we investigate the use of a full HMM2 system (i.e.,
with differentsecondaryHMMs for eachprimaryHMM state)in orderto extractmeaningfulstructuralinfor-
mation such as formant positions, and, as one more new extension, also temporal information (durations and
time indices). Fig. 1 shows the resulting system, which is based on two recognition passes: in the first pass,
new features are extracted using HMM2, and in the second pass, recognition is performed using a conven-
tional HMM.

In thefollowing, we first describetheformalismof theHMM2 approachandour previouswork relatedto
the present paper. Then, we show how the previous HMM2 system can be improved through the introduction
of additional frequency information. Thereafter, we explain how meaningful structural information can be
extracted using a full HMM2, followed by encouraging experimental results and a brief description of even
more promising HMM2 extensions.

2 THE HMM2 APPROACH
Formalism. HMMs are quite powerful statistical models which are used to represent sequential data, e.g. a
sequenceof acousticvectors in speechrecognition.As eachacousticvector canitself beconsideredas
a fixed length sequence of its components , another HMM can be used to model this feature
sequence. While a primary HMM models temporal properties of the speech signal, a secondary, state-depen-
dentHMM worksalongthefrequency dimension.ThesecondaryHMM actsasa likelihoodestimatorfor the
primaryHMM, a functionaccomplishedby GMMs or ANNs in conventionalsystems.In fact,thestateemis-
siondistributionsof thesecondaryHMM aremodeledby GMMs. Consequently, HMM2 is ageneralizationof
the standard HMM/GMM system (which it includes as a particular case). There are different ways to imple-
ment an HMM2 system: (1) using a generalized version of the EM algorithm [1], or (2) realizing HMM2 as
one big ‘unfolded’ HMM and performing conventional EM training [4, 11, 14].

Previous work. Fig. 1 visualizesthetwo variantsof usingHMM2: (a) directly for speechrecognitionand(b)
asa featureextractor. In [14], we reportedword errorrates(WER) of 20.5%(on theNumbers95database)for
thefirst case.As describedabove,thesecondaryHMM actedaslikelihoodestimator. In [13], wetreatedasim-
plevariantof thesecondcase,employing a2-passsystemwhereasinglesecondaryHMM wasusedasfeature
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extractor. This model was trained on all the training data (regardless of the labeling) and used to extract for-
mant-likestructures(in form of thefrequency segmentationsobtainedfrom theViterbi algorithm).Thesewere
subsequentlyusedasfeaturesfor standardHMM. We foundthat(1) thefrequency HMM statesmodelindeed
spectral regions containing high or low signal energies respectively, and the Viterbi segmentation follows
nicely formant-like regionsand(2) thesegmentationfeaturescontaindiscriminantinformation,which yield a
WER of 37.0%whenusedasfeaturesin aconventionalASR system.Furthermore,whenusingthesesegmen-
tation features additionally to noise-robust MFCCs (already including spectral subtraction and cepstral mean
subtraction), we observed improved robustness in noisy speech.

3 IMPROVING HMM2
In this paper, we presentthreeimportantextensionsof our previouswork (asdisplayedin boldfacein Fig. 1).
Firstly, concerning the HMM2 variant using the secondary HMM as likelihood estimator, we show how an
additional ‘ frequency coefficient’ is appended to the initial spectral vectors (see section 3.1). The second
extension concerns the use of HMM2 as feature extractor: we now use a full HMM2 system (hence with one
different secondary HMM for each state of the primary HMM) in order to dynamically extract new HMM2
features (see section 3.2). Finally, these HMM2 features are augmented by temporal information, also
extracted with HMM2 during Viterbi decoding (see section 3.3).

3.1 Adding frequency information

As conventional HMMs, HMM2 have some difficulties to model duration, which corresponds to frequency
bandwidthfor thecaseof thesecondaryHMM. Thetransitionprobabilities,which aresupposedto modelthe
width of the frequency bands of spectral peaks or valleys, only have a limited influence on the overall likeli-
hoodof thesequence.Consequently, a majorproblemin theapplicationof HMM2 for speechrecognition(as
identified in [14]) is that the positions of the spectral peaks/valleys in one temporal feature vector do not
greatlyeffect its likelihood.However, asformantpositionshave shown to bediscriminantfeaturesfor speech
recognition[5, 13], it is essentialthatthey areconsideredin amoresophisticatedway in orderto obtainagood
performancewith HMM2. In this paper, we proposea new way to modelthefrequency positionsin a second-
aryHMM. Theideais to extendeachfeaturevectorby its frequency position,asshown in Fig. 2. This hasthe
effectof forcing theViterbi algorithmto take thefrequency positionof eachfeaturevectorinto accountduring
the frequency segmentation.

Figure 1: HMM2 systemuseddirectly for speech recognition (a), and
for featuresextraction(b). For (b), a secondrecognition pass,usinga
conventional HMM, is performed.
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As anexample,let usconsidertoy speechdataof two classesa andb, bothconsistingof 2 alternatingspec-
tral peaks (H) and valleys (L), resulting in the overall structure HLHL (as shown in Fig. 3) These classes can
bedistinguishedonly by thepositionof thespectralpeaksandvalleys.UsingHMM2 without frequency coef-
ficients,theonly way of modelingthedifferencesbetweena andb is by thetransitionprobabilities,which,as
stated previously, do not have much influence. The two classes are therefore easily confusable. When intro-
ducingthefrequency coefficients,theViterbi segmentationof a featurevectoris in someway constrainedand
discriminability will be maintained. In fact, the frequency coefficient is handled in the same way as the other
coefficientsin afeaturevector, i.e. it is modeledby theGMM. TheGaussianmeanwill correspondto themean
frequency of the modeled frequency band, and the variance should be an indicator for the bandwidth.

Figure 2: Frequencycoefficients:(a) Featurevectorsasusedin the
secondaryHMM composedof coefficients cs, their delta ds and
acceleration coefficientsas, as well as the frequencycoefficient fs.
In (b) it is shown how the ‘frequency coefficients’ are obtained.
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While the ideaof usinganadditionalfrequency coefficient mayseemsurprising,it is justified in the fre-
quency warping performed by HMM2. As seen later, improved recognition results confirm the suitability of
this idea.Naturally, in standardHMMs this frequency coefficient doesnot give any additionalinformation,as
the frequency position of each coefficient is implicitly considered.

3.2 Using a full HMM2 for feature extraction

HMMs have beenusedpreviously to extractstructuralinformationsuchasformantpositionsfrom thespeech
signal[8, 13]. [6] statesthatthe‘analysisof formantsseparatelyfrom hypothesesaboutwhatis beingsaidwill
alwaysproneto errors’andthat,for a formantanalyzerto beoptimal,it shouldbeintegratedin a recognition
scheme.Following thesameline of reasoning,webelieve thatHMM2 offersasuitableframework for extract-
ing speech structures (such as formant positions), which is supported by encouraging experimental results.

As describedabove, a full HMM2 is usedasa featureextractorin a 2-passrecognitionsystem(extension
2). We obtainthetemporalandfrequency segmentationasa by-productfrom theViterbi algorithmperformed
usingHMM2 in thefirst pass.Contrarilyto thecasewhenusinga singlesecondaryHMM asfeatureextractor
(asin ourpreviouswork), theobtainedfrequency segmentationdependsontheunderlyingtemporalsegmenta-
tion (i.e.on thehypothesizedtemporalstatesequenceof theHMM2). It is obviousthatthefrequency segmen-
tation may have a different meaning for different temporal HMM states.

3.3 Including a time index

In addition to using the frequency segmentation as features, we can also make use of the temporal segmenta-
tion to extract a temporal index and/or a duration parameter (extension 3). This kind of information has suc-
cessfullybeenusedin speechrecognitionbefore,e.g.in ‘trendedHMMs’ [3] or in the‘time index model’ [7].
A durationparameterexpressesthetotal time spentin onespeechunit (temporalstateor phoneme)according
to the HMM2 temporal segmentation (this parameter will be constant for all segmentation feature vectors of
thespeechunit concerned).A temporalindex expressesfor eachtimestepthetimealreadyspentin thecurrent
speech unit.

4 EXPERIMENTAL RESULTS
Database and HMM2 training. Experiments were carried out on the OGI Numbers95 corpus [2]. 12 fre-
quency filtered filterbank coefficients (including one energy coefficient) [10], additionally normalized, were
used as (spectral) features. The 4-dimensional feature vectors consisted of a coefficient, its first and second
ordertime derivativesandits frequency coefficient (hereindicesfrom 1 to 12).TheHMM2 wasrealizedwith
HTK [15]. Final models were 80 triphones, each consisting of 3 temporal states. All secondary HMMs had 4
states connected in a looped top-down topology, and an additional non-looped state for the energy. This sys-
tem was trained globally using the EM algorithm, and Viterbi-based recognition was performed. The trained
HMM2 parametersgivecuesaboutthestructureof thespeechsignal.In Fig. 4, theGaussianmeansof thefre-
quency indices (the 4th component of the feature vectors) are shown for different phonemes of our database
(for comparison,thoseoccurringin Fig. 5 werechosen).It canbeseenthattheseparametersvary acrosspho-
nemes,andthat,for a givenphoneme,they mayalsovary in time.Moreover, thecorrespondingvariancesare
visualized. While the trained means of the frequency index provide information about the position of the fre-
quency bandsmodeledby thecorrespondingstates,thevariancesmodeltherespectivebandwidths.Thefigure
confirms that some general structural information of the phonemes is modeled. However, the correspondence
to formantpositionshasyet to bethoroughlyverified.In thefollowing, wegiveexperimentalresults,confirm-
ing the utility of the 3 HMM2 extensions described in section 3.

1. Including frequency information (using HMM2 directly for speech recognition). A WER of 14.0% was
obtained, as opposed to 20.5% for a system without frequency index. Although this result is not competitive
with state-of-the-art ASR systems (yielding 5.7% on the same database), it is promising as it confirms the
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Figure 4: TrainedHMM2 parameters for differentphonemes.In each column,themeansof
thefrequencyindicesof the4 secondaryHMM statesbelongingto thesametemporal state
are visualized.Vertical bars showthe respectivevariances.The3 columnsbelongingto a
phoneme correspond to the 3 temporal states.
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Figure 5: Segmentationsobtained(on unseendata) from (a) a singlefrequencyHMM as
usedpreviously [13] and (b) a full HMM2 system.In both figures, the horizontal lines
correspondto the frequencysegmentation.In (b), the vertical lines show the temporal
segmentationobtained from the full HMM2 system,where phonemeboundariesare
displayedas thick lines,andtransitionsbetweentemporal statesof thesamephonemesas
thin ones.
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(b) segmentation (and labeling) obtained from a full HMM2
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validity of the HMM2 model for our purpose: extracting meaningful segmentations along the time and fre-
quency axes.

2. Using a full HMM2 for feature extraction. Fig. 5 shows the obtained temporal and frequency segmenta-
tion for an example N95 sentence from an independent test set. In (a), the frequency segmentation obtained
with a single secondary HMM is shown. (b) shows the temporal and frequency segmentation obtained by the
full HMM2 as described in this paper. To test discriminability of the HMM2 frequency segmentations, they
wereusedas(3-dimensional)featuresfor aconventionalASRsystem,yieldingaWERof 18.6%(whichcom-
pares to 37.0% for the segmentations of the single secondary HMM).

3. Including a time index. By addinganadditionalnormalizedtime index to thefeaturevector(extractedby
HMM2 andusedin aconventionalHMM), theWERcouldbefurtherreducedto 15.0%(however, theduration
parameterwasnot foundto beuseful).In ouropinion,thisapromisingresult,giventhecrudenessandthelow
dimension of the segmentation features.

It hasalreadybeenshown that segmentationfeaturesobtainedfrom a single frequency HMM arequite
robust to noise, and that the robustness of a state-of-the-art ASR system can be improved when augmenting
noise-robustMFCCfeaturevectorby 3 segmentationfeatures[13]. It is very likely (but still hasto beverified)
thatthesegmentationfeaturesobtainedfrom thefull HMM2, whenappendedto MFCCfeaturevectors,shows
even greater noise robustness.

5 CONCLUSION AND FUTURE WORK
In this paper, we have shown that the HMM2 approach provides us with a sophisticated statistical model,
whichcanbeusedto extractmeaningfulstructuralinformationsuchasformantpositionsfrom thespeechsig-
nal. The experimental results, although quite preliminary, confirm the ability of HMM2 for speech modeling
in general,andasa robustfeatureextractorfor speechrecognitionin particular. However, theapplicationof a
full HMM2 systemasafeatureextractoris acompletelynew researcharea,whichstill leavesa lot of spacefor
improvements. For instance, we believe that it is possible to extract even better features with HMM2. For
instance, additional representative energy values from the dynamically segmented frequency bands could by
addedto thesegmentationfeaturevectors.SuchanHMM2 canbeconsideredasadynamicmulti-bandfeature
extractor, wherethepositionandwidth of thefrequency bandsdependon thetemporalsegmentationinto pho-
nemes and hence varies with the data.
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