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Abstract: As recently introduced in [1], an HMM2 can be considered as a particular case of an HMM mixture in
which theHMM emissionprobabilities(usuallyestimatedthroughGaussianmixturesor anartificial neuralnetwork)
are modeled by state-dependent, feature-based HMM (referred to as frequency HMM). A general EM training algo-
rithm for such a structure has been developed [2]. Although there are numerous motivations for using such a struc-
ture, and many possible ways to exploit it, this paper will mainly focus on one particular instantiation of HMM2 in
which the frequency HMM will be used to extract formant structure information, which will then be used as addi-
tional acousticfeaturesin a standardAutomaticSpeechRecognition(ASR) system.While thefactthatthis architec-
ture is able to automatically extract meaningful formant information is interesting by itself, empirical results also
show the robustness of these features to noise, and their potential to enhance state-of-the-art noise-robust HMM-
based ASR.
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1 INTRODUCTION
State-of-the-artspeechrecognitionsystemsarebasedonhiddenMarkov models(HMM) wherethestateemis-
sion probabilities are typically estimated by Gaussian mixture models (GMM) or artificial neural networks
(ANN). As recently introduced, HMM2 consist of standard HMMs where the emission probabilities are esti-
mated by another, state-dependent, ‘frequency’ HMM [1].

A standardHMM emitsasequenceof featurevectors.Theestimationof thelikelihoodsof a featurevector
givenanHMM stateis conventionallybasedonGMM or ANN. Alternatively, this likelihoodcanbeestimated
by a frequency HMM. At each time step, the frequency HMM emits one feature vector in the form of a
sequenceof its components(usuallyscalarvalues).Typically, this featurevectoris in thespectraldomain,and
eachof its scalarscorrespondsto a frequency component.Eachstateof thefrequency HMM is thusdescribed
by a one-dimensional probability density function, typically assumed to be Gaussian or a Gaussian mixture.
Therefore, the HMM2 parameters are the Gaussian means, variances and mixture weights of the frequency
HMM as well as the transition probabilities of the conventional and the frequency HMMs.

Frequency and conventional HMMs can be combined in a recognition system in different ways. A fre-
quency HMM (associatedwith acertainstateof theconventionalHMM) estimatesthelikelihoodfor a feature
vector(which thereforehasbeendecomposedinto asequenceof subvectorsor scalars).This likelihoodis then
further processed in the conventional HMM the same way as if it had been estimated by a GMM. In fact, the
HMM2 canbe‘unfolded’ into onebig HMM, providedsomesynchronizationconstraintis introduced.Train-
ing can therefore be done with an EM algorithm as conventionally applied to HMMs. This and similar
approaches have been applied before in computer vision [3,4,5] (although the interpretation of the so-called
Pseudo2D-HMM differs somewhat from ours). However, in [2] an integrated EM training algorithm which is
suited to this particular HMM2 topology (and which therefore avoids the constraints mentioned above) has
been proposed.

As we will discuss in more detail in section 2, the HMM2 approach has several advantages compared to
state-of-the-art systems, such as the modeling of correlations through the frequency HMM’s topology with a
parsimonious number of parameters, automatic non-linear frequency warping and dynamic (implicit or
explicit) formant trajectory tracking.

In contrastto theHMM2 systemintroducedin [1], theparticularHMM2 systemwe focuson in this paper
usesthefrequency HMM to explicitly extractformantstructures.Theusefulnessof formantfeaturesfor ASR
hasalreadybeeninvestigated,e.g.in [6,7]. On theotherhand,hiddenMarkov modelshave successfullybeen
applied to formant tracking before [8]. Here, we propose to use the formant structures extracted by the fre-
quency HMM as features in a conventional HMM system.

In thefollowing, we discussthemotivationsof theHMM2 approach.We thendemonstratetheabilitiesof
the frequency HMM to extract formant structures, and explain how these can be used for speech recognition.
Finally, experimental results showing an improved robustness compared to state-of-the-art noise-robust fea-
tures are presented.

2 EXTRACTION AND USE OF FORMANT FEATURES
The general motivations of using HMM2 as described above are the following:

• Betterfeaturecorrelationmodelingthroughthefeature-based(frequency) HMM topology. Also, thecom-
plexity of this topologyandtheprobabilitydensityfunctionassociatedwith eachstateeasilycontrol the
number of parameters.
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• Automaticnon-linearspectralwarping.In thesameway theconventionalHMM doestime warpingand
time integration, the feature-based HMM performs frequency warping and frequency integration.

• Dynamicformanttrajectorymodelling.As furtherdiscussedbelow, theHMM2 structurehasthepotential
to extract somerelevant formantstructureinformation,which is oftenconsideredasimportantto robust
speech recognition.

In thepresentpaper, wemainly focusonthelastmotivation,asthefeature-basedHMM is usedto dynamically
segment the frequency vector into formant-like regions. It is generally agreed that formants are perceptually
importantfeatures.It is alsooftenacknowledgedthatspectralpeaks(formants)shouldbemorerobustto addi-
tive noisesincetheformantregionswill generallyexhibit a largesignal-to-noiseratio.Therefore,theposition
of these formants in a speech segment could be quite useful for phoneme discrimination.

Figure1 illustrateshow formant-like featurescanbeextractedwith a frequency HMM, andthenbeusedas
supplementaryfeaturesin aconventionalHMM. Startingfrom thespeechsignal,featurevectorsin thespectral
domain are extracted (a). These features are used to train the frequency HMM (b). After training, the fre-
quency HMM will beusedto performasegmentationalongthefrequency axisfor eachspectralfeaturevector
(c). Theupperpartof (c) shows this segmentationin thetime-frequency plane,whereasthelower partvisual-
izes the segmentation features themselves. These ‘ formant features’ are then appended to state-of-the-art
noise-robust features (d). Then, the new features (comprising the usual state-of-the-art noise-robust features
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Figure 1: Extraction of formant features from spectral feature vectors (a) with a frequency HMM (b).
Concatenation of the formant features obtained (c) to state-of-the-art noise-robust features (d). The new
combined features (e) are then processed in conventional HMMs (f) as usual.
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and the formant features, (e)) are used to train a conventional HMM (f). The usual speech recognition algo-
rithms can then be applied.

As expected,andasfurthershown later, thisapproachindeedresultedin theextractionof somemeaningful
formant information, already quite robust by itself. Further empirical results discussed below also show that
complementingstandard,alreadynoise-robust,acousticfeatureswith this formantinformationyieldedsignifi-
cant performance improvements in noisy conditions.

3 EXPERIMENTS
The experiments described here were carried out on the OGI Numbers95 corpus [9], which comprises a
vocabularyof 30words(continuouslyspokendigits).Variousnoises,e.g.from theNoisex database[10], were
added, and different features were extracted.

Our baselinesystemworkswith 13 MFCC-SS(i.e.,MFCC calculatedafterspectralsubtraction(SS),with
cepstral mean subtraction (CMS) and including energy), as well as their first and second order derivatives,
making up feature vectors of 39 coefficients. It is important to note that state-of-the-art noise reduction tech-
niques(SSandCMS)havebeenusedin theextractionof thesebaselinefeatures,sothatthey arealreadyquite
robust to additive as well as convolutional noise. We use the GMM-based HTK system [11] for training and
recognition.Final modelsare80 context-dependentphonemeswith 3 states,eachcomprisinga mixtureof 10
Gaussians. On the clean Numbers95 development test set, we obtain a word error rate (WER) of 5.7%.

As featuresfor thefrequency HMM we usefrequency-filteredfilterbanks(FF),asproposedin [12]. These
FF features were chosen because they are a rather normalized and decorrelated spectral representation. First
andsecondordertemporalderivativeswereappendedin orderto introducesomesmoothing.Eachof these33-
dimensional temporal feature vectors was rearranged into 11 3-dimensional subvectors, a subvector being
composed of an FF coefficient as well was its first and second order time derivatives. At each time step, the
frequency HMM emitsa33-dimensionalfeaturevectorin theform of asequenceof 113-dimensionalsubvec-
tors.

The topology of the frequency HMM is strictly top-down with loops on each state (see figure 1 (b)). The
numberof statesin thefrequency HMM waschosenaccordingto thenumberof formantregionswe aimedto
model.For theresultsreportedin this paper, we used4 states.Trainingwasdonewith anEM algorithmon all
FF data of the Numbers95 train set. Afterwards, the Viterbi algorithm was used to obtain a segmentation
(given the trained frequency HMM) for each FF feature vector of the whole database. Such a segmentation
typically consists of 3 values indicating the location in frequency of the transitions between the 4 successive
frequency HMM states.Thesevalueswouldconstitutethenew formantfeaturevector, whichcanbeappended
as a second information stream to state-of-the-art features.

3.1 Formant tracking with a frequency HMM

In order to verify that a frequency HMM is indeed able to extract formant structures, we used frequency
HMMs trainedonly on certainpartsof thedatabase.Thefrequency HMM in theright of figure2 wastrained
on the vowel ‘ow’ . The background of the main part of figure 2 shows a speech segment of FF features (dark
andlight regionscorrespondto positive andnegative coefficientsrespectively). In theleft partof theimage,a
segmentationasperformedby theHMM on vowel ‘ow’ datais shown. It canbeseenthat,e.g.,state3 models
the high energy region of the FF data. Projected onto the original filterbank spectogram (i.e., before the fre-
quency filtering is applied), the transitions follow quite nicely the maxima (formants) and minima of energy.
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This conclusionstill holdsfor similar phonemes,e.g.for thevowel ‘w’ (seeright partof thefigure),andeven
for very different phonemes, some formant-like structures are obtained.

Taking a frequency HMM trained on all data and looking at the segmentation results over sequences of
severalwords,we still seeformant-like structuralinformation,suchascoherentregionsin thetime/frequency
plane modeled by a certain state (an example is displayed in the upper part of figure 1(c)). Although we also
find sudden transitions to completely different segmentations (which in fact might partly be due to phonemic
transitions), and in case of consonants the interpretation of the segmentation as formant structures no longer
holds,this resultwasencouragingusto go onestepfurtherandbuild a recognitionsystemwith thesegmenta-
tion data as features.

3.2 Recognition experiments

Can the segmentation information obtained from a frequency HMM (as described in the previous section) be
usefulfor speechrecognition?To answerthis question,we usedthesegmentationinformation(obtainedfrom
the frequency HMM trained on all data) as features for a conventional HMM, as described previously.

A conventionalHMM systemwasthustrainedwith featurevectorscomprisingonly 3 components,corre-
spondingto the3 positionsof thesegmentationalongthefrequency axis(e.g.,[3 5 8], asshown in Figure2).
Architecture and training procedure of this system are the same as in our baseline system (apart from some
parametersdueto thedifferentdatadimension).WeobtainaWERof 43.2%oncleandata,whatweconsidera
very good result given the rather crude and low-dimensional features employed here. It shows that our fre-
quency HMM is indeed able to extract meaningful (discriminative) information for recognition.
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Figure 2: Segmentationsobtainedform a frequencyHMM trainedon the vowel ‘ow’ for a speech segment
containingan exampleof phoneme‘ow’ asin theword ‘oh’ (left) andof phoneme‘w’ asin ‘one’ (right). The
horizontal axis represents time and the vertical axis frequency evolution.
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For feature combination with state-of-the-art features, we used the same method as described in [13] and
appended the segmental features obtained from the frequency HMM to the MFCCs, thus obtaining feature
vectors of 39+3=42 coefficients. Again, we stick to the same system architecture and training procedure as
usedin our baselinesystem.For cleanspeech,we obtaina comparableWER (5.6%vs.5.7%in thebaseline).
More results on speech with additive Noisex factory noise can be found in Table 1. While recognition results
for high signal-to-noise ratios (SNR) are comparable to those of the baseline system, the word error rate
decreasesfor thecaseof low SNR.Furthertestsoncarandlynx noiseconfirmedtheseresults.Overall,wecan
state with more than 95% confidence that our system works better than the baseline.

3.3 Discussion

The results reported in the previous section are promising, even more so as our present frequency HMM sys-
tem is still very crude. We believe that with a more sophisticated method for obtaining formant structures, an
even better recognition performance can be achieved in noisy speech. One method currently under investiga-
tion is to train one distinct frequency HMM for each phoneme, resulting in dynamic, model-dependent fea-
turesat thelevel of theconventionalHMM. Furthermore,introducingsomemechanismin orderto smooththe
segmentation of the frequency HMM along the time axis could be helpful. Frequency HMMs with different
topologies(e.g.,numberof states)mightbeinvestigated,anddifferentspectralfeatures(possiblywith ahigher
frequency resolution) may be used.

4 CONCLUSION
In this paper, we presented a particular instantiation of the HMM2 approach in which formant structures are
explicitly extractedby afrequency HMM. Thesearethenusedasfeaturesin aregularGMM-basedHMM sys-
tems. We presented experimental results showing that the obtained segmentation might indeed correspond to
formantstructures,andthatit containssomediscriminative informationwhichcanenhancetherobustnessof a
standard noise-robust ASR system.

SNR 39 MFCC-SS
(baseline
system)

3 formant
features

39MFCC-SS
+ 3 formant

features

clean 5.7 43.2 5.6
18 7.4 42.3 7.3
12 11.9 49.8 11.4
6 23.0 62.2 21.4
0 48.6 76.4 46.6

Table 1: WER on Numbers95 with additive Noisex
factory noise for different SNR for the noise-robust
baseline system (39 MFCCs, extracted after spectral
subtraction), a system with 3 formant features only and
the combined MFCC-formant-feature system.
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