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Abstract

The purpose of Face localization is to determine the coordinates of a face in a given
image. It is a fundamental research area in computer vision because it serves, as a
necessary first step in any face processing system, such as automatic face recognition,
face tracking or expression analysis. Most of these techniques assume, in general,
that the face region has been perfectly localized. Therefore, their performances
depend widely on the accuracy of the face localization process. The purpose of
this paper is to mainly show that the error made during the localization process
may have different impacts on the final application. We first show the influence of
localization errors on the face verification task and then empirically demonstrate the
problems of current localization performance measures when applied to this task. In
order to properly evaluate the performance of a face localization algorithm, we then
propose to embed the final application (here face verification) into the performance
measuring process. Using two benchmark databases, BANCA and XM2VTS, we
proceed by showing empirically that our proposed method to evaluate localization
algorithms better matches the final verification performance.

Key words: Face Detection and Localization, Face Verification, BANCA and
XM2VTS Databases

1 Introduction

Face localization (FL) is the process of finding the exact position of a face in a
given image [1,2]. It is generally used as an important step in several applica-
tions such as face tracking [3–5] or person authentication [6,7]. Unfortunately,
it is difficult to measure the performance of a face localization algorithm, as no
universal criterion has been acknowledged in the literature for this purpose.
In fact, we argue in this paper that such a criterion does not exist and we
propose instead the use of a criterion that would be specifically tailored for
each application for which the localization algorithm would be designed.
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In order to illustrate this argument, this paper concentrates on a face verifi-
cation (FV) task [8,9]. In that context, the best localization algorithm should
be the one that minimizes the number of errors made by a specific verification
algorithm.

The paper thus starts by analyzing how various kinds of localization errors
affect the performance of two different face verification algorithms, on two dif-
ferent benchmark databases. This empirical analysis, presented in Section 4,
clearly demonstrates that not all localization errors induce the same verifi-
cation error, even if the current localization performance measures, such as
those presented in Section 2, would have rated them similarly.

In the second part of this paper, we go one step further: knowing that verifica-
tion in itself is not error-free, we propose a new localization measure adapted
to the task of verification. This measure estimates directly the verification
errors as a function of the errors made by the localization algorithm. In this
paper, we estimate this measure using a simple K nearest neighbor (KNN)
algorithm. We then show empirically that the localization measure estimated
by this simple procedure better reflects the performance of a face localization
algorithm when used for a face verification task.

The paper is organized as follows. Section 2 presents an overview of classi-
cal measures currently used in the literature in order to evaluate the perfor-
mance of a face localization algorithm. Section 3 then presents the empirical
framework (databases, face verification and face localization systems) used in
this paper to analyze face localization algorithms and evaluate our proposed
method. Section 4 presents two different empirical analyses that both show
that the performance of a localization algorithm can only make sense in the
context of the application for which the localization algorithm was built for.
This is then followed by Section 5, which presents the idea consisting in es-
timating the error made by the verification process given the error made by
the localization process. Section 6 evaluates empirically how this new perfor-
mance measure behaves on a real benchmark database, and finally Section 7
concludes the paper.

Note that this paper builds on the initial ideas presented in [10], which are
extended in several respects, including a thorough empirical analysis of the
relation between localization and verification errors for face verification sys-
tems.
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2 Performance Measures for Face Localization

2.1 Lack of Uniformity

Direct comparison of face localization systems is a very difficult task, mainly
because there is no clear definition of what a good face localization is. While
most concerned papers found in the literature provide localization and error
rates, almost none mention the way they count a correct/incorrect hit that
leads to computation of these rates. Furthermore, when reported, the under-
lying criterion is usually not clearly described. For instance, in [11] and [12],
a detected window is counted as a true or false detection based on the visual
observation that the box includes both eyes, the nose and the mouth. Ac-
cording to Yang’s survey [13], Rowley et al. [14] adjust the criterion until the
experimental results match their intuition of what a correct detection is (i.e.
the square window should contain the eyes and also the mouth). In some rare
works, the face localization criterion is more precisely presented. In [15] for
instance, Lienhart et al. count a correct hit if the Euclidean distance between
the centers of the detected and the true face is less than 30% of the width of
the true face, and the width of the detected face is within ±50% of the true
face. In [16], the authors consider a true detection if the measured face posi-
tion (through the position of the eyes) and size (through the distance between
the eyes) do not differ more than 30% from the true values. Unfortunately, the
lack of uniformity between reported results makes them particularly difficult
to compare and reproduce.

2.2 A Relative Error Measure

Recently, Jesorsky et al. [17] introduced a relative error measure based on
the distance between the detected and the expected (ground-truth) eye center
positions. Let Cl (respectively Cr) be the true left (resp. right) eye coordinate
position and let C̃l (resp. C̃r) be the left (resp. right) eye position estimated
by the localization algorithm. This measure can be written as

deye =
max(d(Cl, C̃l), d(Cr, C̃r))

d(Cl, Cr)
(1)

where d(a, b) is the Euclidean distance between positions a and b. A successful
localization is accounted if deye < 0.25 (which corresponds approximately to
half the width of an eye).

This is, to the best of our knowledge, the first attempt to provide a unified
face localization measure. We can only encourage the scientific community to
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use it and mention it when reporting detection/error rates when the task is
localization only. Researchers seem to only start to be aware of this problem
of uniformity in the reporting of localization errors and now sometimes report
cumulative histograms of deye [18,19] (detection rate vs. deye), but this still
concerns only a minority of papers. Furthermore, a drawback of this measure
is that it is not possible to differentiate errors in translation, rotation and
scale.

2.3 A More Parametric Measure

More recently, Popovici et al. [20] proposed a new parametric scoring func-
tion whose parameters can be tuned to more precisely penalize each type of
errors. Since face localization is often only a first step of a more complex face
processing system (such as a face recognition module), analyzing individually
each type of errors may provide useful hints to improve the performance of
the upper level system.

In the same spirit as in [20], let us now define four basic measures to represent
the difference in horizontal translation (∆x), vertical translation (∆y), scale
(∆s) and rotation (∆α):

∆x =
dx

d(Cl, Cr)
, (2)

∆y =
dy

d(Cl, Cr)
, (3)

∆s =
d(C̃l, C̃r)

d(Cl, Cr)
, (4)

∆α =
̂−−→

ClCr,
−−→
C̃lC̃r , (5)

where dx is the algebraic measure of vector
−→
dx. All these measures are sum-
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Fig. 1. Summary of some basic measurements made in face localization. Cl and Cr

(resp. C̃l and C̃r) represent the true (resp. the detected) eye positions. C0 (resp.
C̃0) is the middle of the segment [ClCr] (resp. [C̃lC̃r]).
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marized in Figure 1. The four delta measures are easily computed given the
ground-truth eye positions (Cl and Cr) and the detected ones (C̃l and C̃r). Fur-
thermore, as it will appear useful later in the paper, one can artificially create
detected positions given these four delta measures. Note finally that both the
choices of Jesorsky’s threshold (0.25) and Popovici’s weights on each of these
delta measures (in order to obtain a single measure) still remain subjective.

2.4 Application-Dependent Measure

In this paper, we argue that a universal objective measure for evaluating face
localization algorithms does not exist. A given localized face may be correct
for the task of initializing a face tracking system [3], but may not be accurate
enough for a face verification system [6]. We therefore think that there can
be no absolute definition of what a good face localization is. We rather sug-
gest to look for an application-dependent measure representing the final task.
Moreover, in the context of face verification, there has been several empirical
evidence [6] showing that the verification score obtained with a perfect (man-
ual) localization is significantly better than the verification score obtained
with a not-so-perfect (automatic) localization, which shows the importance of
measuring accurately the quality of a face localization algorithm for verifica-
tion.

Hence, in the remainder of the paper, we will empirically show, using some real
datasets, how face localization errors affect face verification results, and how
it can be more accurately measured than using currently proposed measures.

3 Baseline System

In this Section, we describe the environment used to perform all the exper-
iments of this paper. We first describe the databases, then the localization
system, and finally the verification systems.

3.1 The Face Databases

In all the experiments described in the paper, we used two different databases.
The XM2VTS database is used mainly for preliminary analysis and training
purposes while the BANCA database is used to evaluate the quality of face
localization performance measures (see Figure 2 for example images of each
database). The XM2VTS database contains synchronized video and speech
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(a) XM2VTS (controlled
conditions): uniform back-
ground and lighting

(b) BANCA English
(uncontrolled conditions):
complex background and
lighting variability

Fig. 2. Comparison of XM2VTS (a) and BANCA (b) face image conditions.

data from 295 subjects, recorded during four sessions taken at one month in-
tervals. The subjects were divided into a set of 200 training clients, 25 evalua-
tion impostors and 70 test impostors. We performed the experiments following
the Lausanne Protocol Configuration I described in [21].

The BANCA database [22] was designed to test multi-modal identity veri-
fication with various acquisition devices under several scenarios (controlled,
degraded and adverse). In the experiments described here we used the face
images from the French and English corpora, each containing 52 subjects.
Each subject participated in 12 recording sessions in different conditions and
with different cameras. Each of these sessions contains two video recordings:
one true client access and one impostor attack. Five “frontal” face images were
extracted from each video recording. Following the BANCA Experimental Pro-
tocol [22], these five images should be considered as a single access; however,
in order to estimate and test our proposed measure (see Section 5), we used
each image as an independent access. Out of the 7 protocols, we decided to
use protocol P, which appears to be the most realistic one.

3.2 The Face Localization System

In this paper, we used the real-time frontal face detector presented by Fröba
and Ernst [23] for face localization. We used a Modified version of the Census
Transform (MCT) to compute local 3x3 kernel features which capture the
local spatial image structure. At each pixel location in an image, the feature
is defined as an ordered set of pixel intensity comparisons. Due to their lo-
cal structure, MCT features are invariant to gray scale transformation which
makes them robust against illumination changes. The classification is per-
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formed by a cascade classifier framework, inspired by the work of Viola and
Jones [24]. The classifier structure is however much simpler than previous ap-
proaches, consisting of only four stages (instead of more than 20 in the original
approach). As in [24], we used the AdaBoost [25] algorithm for both feature se-
lection and training. An on-line demo program of our face localization system
can be found on the internet http://www.idiap.ch/∼marcel/en/detector.php.

Like many popular recent systems, this detector is an image-based approach,
using the principle of a scanning window. A test image is exhaustively scanned
at multiple positions and scales; each window is then classified as either con-
taining a face or not. The main scanning parameters are the horizontal and
vertical steps between two consecutive scanning windows and the scale factor
(see Figure 3). Localization precision is closely related to these parameters, as
is the computational cost (number of windows to scan).

3.3 The Face Verification Systems

A face verification system (FV) usually consists in image normalization and
feature extraction followed by classification [26–28]. In this study we used
two kinds of FV, namely DCT/GMM and PCA/Gaussian systems, which we
briefly describe here.

In both systems, a 80×64 (rows × columns) face window is first cropped out,
based on the result of the face localization process. Each face window should
contain the face area from the eyebrows to the chin. Moreover, the location
of the eyes should be the same on each face window (via geometric normal-
ization). Histogram equalization is then used afterward in order to normalize

L’

L

scale factor = L’/L

step x

step y

Fig. 3. Face localization scanning parameters: step x, step y and scale factor. The
choice of these parameters both affects the speed of the system as well as accuracy.
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Accept/Reject

(a) DCT/GMM

Feature VectorsCropped Face

Accept/Reject

Models Decision

(b) PCA/Gaussian

Fig. 4. Conceptual representations of the two face verification systems

the face images photometrically.

Using the DCT/GMM system [6,29], we then extract a set of DCTmod2 fea-
ture vectors X from each face image [30]. The DCT/GMM system was imple-
mented using a Gaussian Mixture Model (GMM) technique similar to those
used in text-independent speaker verification systems [31]. A generic GMM is
trained with the features computed on several faces (non-client specific), in
order to maximize p(X|Ω), the likelihood of a face X given the generic GMM
parameters Ω, for all X of the training database. This GMM is then adapted
for each client i in order to produce a new GMM model of p(X|Ci), the likeli-
hood of a face X given the parameters of a client Ci. The ratio between these
likelihoods represents the score of the verification model, which is then com-
pared to a threshold θ in order to take a final decision. A conceptual example
of the DCT/GMM system is represented in Figure 4(a).

In comparison, the PCA/Gaussian model is based on Principal Component
Analysis (PCA) feature extraction [32]. The classifier used for the PCA system
is somewhat similar to the DCT/GMM system; the main difference is that only
two Gaussians are used: one for the client and one to represent the generic
model 1 . Due to the small size of the client specific training dataset, and since
PCA feature extraction results in one feature vector per face, each client model
inherits the covariance matrix from the generic model and the mean of each
client model is the mean of the training vectors for that client. A similar

1 The number of Gaussians of the DCT/GMM model is in general much higher and
is normally tuned on some validation set.
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system has been used in [33,34]. A conceptual example of the PCA/Gaussian
system is represented in Figure 4(b).

The FV performance is generally measured in terms of False Acceptance
Rate (FAR) and False Rejection Rate (FRR), defined as:

FAR(θ) =
number of FAs

number of impostor accesses
, (6)

FRR(θ) =
number of FRs

number of true claimant accesses
, (7)

where θ is the chosen decision threshold. In order to help the interpretation of
performance, the two error measures are often combined using the Half Total
Error Rate (HTER), defined as:

HTER =
FAR + FRR

2
.

Furthermore, since in real life applications the decision threshold θ has to be
chosen a priori, we selected it in order to obtain Equal Error Rate (EER) per-
formance, where FAR(θ)=FRR(θ) on the validation set 2 . The same threshold
is then used on the test set to obtain the final HTER.

4 Robustness of Current Measures

The purpose of this Section is to analyze the relation between the tasks of face
localization and face verification, by observing how errors reported by the FL
system affect the FV system. We start by observing, in Section 4.1, the perfor-
mance of a of FV system when we artificially introduce some localization errors
in the tested face images. Then, in Section 4.2, we empirically demonstrate
for a particular case that a generic face localization measure is not accurate.
These preliminary experiments are performed on the XM2VTS database us-
ing the associated protocol. The experiments were carried out with the two
different FV approaches briefly described in Section 3.3, namely DCT/GMM
and PCA/Gaussian. The models are trained with manually located images
and the decision threshold is chosen a priori at EER on the validation set
(also using manually located images). The FV systems are thus independent
of the FL system used. The FAR, FRR and HTER performance measures are
then computed with perturbed face images from the test set.

2 Since the terminology is not consistent in the evaluation protocols associated
with the XM2VTS [21] and BANCA [22] databases, we chose in this paper to
name “validation set” the image set used to tune the system hyper-parameters
(including the decision threshold) and “test set” the set of images used to evaluate
the performance.
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4.1 Effect of FL Errors

In Section 2.2, four types of localization errors were defined: horizontal and
vertical translations (respectively ∆x and ∆y), scale (∆s) and rotation (∆α).
As a preliminary analysis, we studied how each type of localization error affects
the FV performance. Specifically, the eye positions were artificially perturbed
in order to generate a configurable amount of translation (horizontal and ver-
tical), scale and rotation errors. Then experiments were performed for each
type of errors independently; i.e. when we generated one type of perturbation,
the others were kept null.

Figure 5 shows the FV performance as a function of the generated perturba-
tions for the two FV systems. Several conclusions can be drawn from these
curves:

(1) Regarding HTER curves, as expected, the FV performance is affected
by localization errors. The minimum of the HTER curves are always
obtained at the ground-truth positions.

(2) In the tested range, FRR is more sensitive to localization errors, the
FAR is not significantly affected. In other words, localization errors in
a reasonable range do not induce additional false acceptances. This was
expected since, after all, a non face rarely becomes a face by simple
geometric transpositions.

(3) HTER curves demonstrate that the two FL approaches are not affected
in the same way. Generally, the DCT/GMM system is more robust to
perturbed images than the PCA/Gaussian system; justification of this
result is discussed further in [29]. Moreover, we remark that the two
systems are not sensitive to the same type of errors; while DCT/GMM
is affected by scale and rotation errors and very robust to translation
errors, the PCA/Gaussian system is very sensitive to all types of errors,
including translation.

4.2 Indetermination of deye

In Section 2, we discussed the important problem of a universal measure to
evaluate face localization performance, in order to get fair and clean system
comparisons. We also introduced the currently unique existing measure, pro-
posed by Jesorsky et al. [17], based on the true and the detected eye posi-
tions (1). We also underlined that this measure does not differentiate errors
in translation, scale or rotation.

For the specific task of FV, prior empirical evidence showed that the perfor-
mance is closely related to the accuracy of the face localization system. In
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Fig. 5. Face verification performance (in terms of FAR, FRR and HTER error
rates) as a function of face localization errors. The error rates are shown for the
DCT/GMM (left column) and for the PCA/Gaussian (right column) face verifica-
tion systems.
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Section 4.1, we went a little bit further by explaining that this performance
is closely related to the type of error introduced by the FL system and that
this dependency varies from one FV system to another (eg. DCT/GMM vs
PCA/Gaussian). We then argued that a universal criterion like deye is not
adapted to the final task of FV and that we thus need to search for an
application-dependent measure.

To illustrate this opinion more clearly, let us look again at the deye measure
and show why it is not adapted to the FV task. In order to understand the
limitations of this measure, we analyze here each type of localization error
independently, as done in Section 4.1.

Table 1
For the specific case of deye = 0.2, the first column contains the corresponding ∆
values and the third column contains the resulting HTER

delta error deye HTER

∆x = −0.2 0.2 5.27

∆x = 0.2 0.2 5.43

∆y = −0.2 0.2 4.14

∆y = 0.2 0.2 3.27

∆s = 0.6 0.2 31.75

∆s = 1.4 0.2 24.65

∆α = 23◦ 0.2 32.35

∆α = −23◦ 0.2 31.24

We first arbitrarily selected a value of deye = 0.2, which commonly means that
the detected pattern is a face (since it is lower than 0.25). We then selected
all kinds of delta errors which would yield deye = 0.2. Details of how to ob-
tain these corresponding delta errors are given in Appendix. Figure 6 shows
examples of localizations obtained for each of these delta errors. The corre-
sponding ∆ values are reported in the first column of Table 1. The last column
shows the resulting face verification performance, in terms of HTER, using the
DCT/GMM face verification system. This experiment basically shows the fol-
lowing:

(1) There is a significant variation in HTER for the same value of deye.
(2) The DCT/GMM system is more robust to errors in translation than to

errors in scale or rotation (for the same deye = 0.2).

Note that in practice, a face detector does not fail only on one type of error.
However, this experiment clearly shows that a face localization performance
measure such as deye is not adapted if we want to take into account the per-
formance of the whole system.
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(a) ground-truth (deye = 0.0)

(b) ∆x = 0.2 (deye = 0.2)

(d) ∆y = 0.2 (deye = 0.2)

(f) ∆s = 1.4 (deye = 0.2)

(h) ∆α = 23◦ (deye = 0.2)

(c) ∆x = −0.2 (deye = 0.2)

(e) ∆y = −0.2 (deye = 0.2)

(g) ∆s = 0.6 (deye = 0.2)

(i) ∆α = −23◦ (deye = 0.2)

Fig. 6. Figure (a) shows the face bounding box for the ground-truth annotation. For
the given value of deye = 0.2, Figures (b) to (i) illustrate the bounding box resulting
from perturbations in horizontal translation (b,c), vertical translation (d,e), scale
(f,g) and rotation (h,i).
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5 Approximate Face Verification Performance

The preliminary experiments conducted in Section 4 should have convinced
that current FL measures are not adapted to the FV task, and we also ar-
gued that it is probably not adapted to any other particular task. Hence, as
explained in Section 2, instead of searching for a universal measure assessing
the quality of a face localization algorithm, we propose here to estimate a
specific performance measure adapted to the target task. We here concentrate
on the task of face verification, hence a good face localization algorithm in
that context is a module which produces a localization such that the expected
error of the face verification module is minimized. More formally, let xi be
the input vector describing the face of an access i, as defined more precisely
in Section 3.2, yi = FL(xi) be the output of a face localization algorithm
applied to xi (generally in terms of eye positions), zi = FV(yi) be the decision
taken by a face verification algorithm (generally accept or reject the access)
and Error(zi) be the error generated by this decision. The ultimate goal of a
face localization algorithm in the context of a face verification task is thus to
minimize the following criterion:

Cost =
∑

i

Error(FV(FL(xi))) . (8)

Our proposed solution for a meaningful FL measure adapted to a given task
is thus to embed all subsequent functions (FV and Error) into a single box
and to estimate this box using some universal approximator:

Cost =
∑

i

f(FL(xi); θ) (9)

where f(·; θ) is a parametric function that would replace the rest of the pro-
cess following localization using parameters θ. In this paper, we consider as
function f(·) a simple K nearest neighbor (KNN) algorithm [35]. In order to
be independent of the precise localization of the eyes, we modified in fact
slightly this approach by changing the input of function f(·) in order to con-
tain instead the error made by the localization algorithm in terms of very
basic measures: ∆x, ∆y, ∆s and ∆α, as described in Section 2. Let GT(xi) be
the ground-truth eyes position of xi and Err(yi, GT(xi)) be the function that
produces the face localization error vector; we thus have

Cost =
∑

i

f(Err(FL(xi), GT(xi)); θ) . (10)

In order to train such a function f(·), we used the following methodology. First,
in order to cover the space of localization errors, we create artificial examples
based on all available training accesses. The training examples of f(·) are
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thus uniformly generated by adding small perturbations (localization errors)
bounded by a reasonable range. For each generated example, a verification is
performed and a corresponding target value of 1 (respectively 0) is assigned
when a verification error appears (respectively does not appear).

6 Experiments and Results

This Section is devoted to verifying experimentally if our proposed method to
measure the performance of localization algorithms in the context of a face
verification task improves with respect to other known measures.

6.1 Training Data

The XM2VTS database was used to generate examples to estimate our func-
tion f(·), which should yield the expected verification error given a localization
error. For each of the 1000 available client images 3 , 50 localization errors were
randomly generated following a uniform distribution in a predefined interval
[−1, 1] for ∆x and ∆y, [0.5, 1.5] for ∆s and [−20◦, 20◦] for ∆α. The training set
thus contains 50000 examples. A verification is performed for each example,
which will be assigned a target value of 1 (respectively 0) when the verification
algorithm accepts the client (respectively rejects him). Furthermore, a separate
validation set of 50000 examples was created using the same procedure (with
the same set of clients, but a different random seed). The hyper-parameter K
of the KNN model, which controls the capacity [36] of f(·), was then chosen
as the one which minimized the out-of-sample error on the validation set.

6.2 Face Localization Performance Measure

Given the set of errors ∆ = {∆x, ∆y, ∆s, ∆α} generated by the FL algorithm
on an image n we define the error of the KNN localization algorithm as:

εKNN(∆n) =
1

K

∑

k∈KNN(∆n)

Ck (11)

3 The preliminary analysis of Section 4.1 showed that FAR is not significantly
affected by localization errors, so we did not use any impostor access for this step.
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where KNN(∆n) is the set of the K nearest training examples of ∆n and Ck is
the error made on example k defined as:

Ck =





0 if Accepted Client

1 if Rejected Client .
(12)

We then estimate the performance of the FL system on a set of N images
using:

EKNN =
1

N

N∑

n=1

εKNN(∆n) . (13)

Similarly, we measure the error made by the deye measure as follows:

εeye(n) =





0 if Accepted Client and deye(n) < 0.25

1 if otherwise
(14)

and

Eeye =
1

N

N∑

n=1

εeye(n) . (15)

6.3 KNN Function Evaluation

In order to verify that the obtained KNN function is robust to the choice of
the training dataset, we chose to evaluate it on another dataset, namely the
English BANCA corpus. In order to extract the faces from the access images,
we used the face localization algorithm described in Section 3.2. This system
involves some scanning parameters typically chosen empirically, such as hori-
zontal and vertical steps and scale factor. When minimizing these parameters,
the localization is expected to be more accurate, however the computational
cost then becomes intractable. These two parameters should thus be selected
in order to have a good performance/computational cost trade-off. In order to
obtain a good trade-off we can either favor translation accuracy by reducing
horizontal and vertical steps or scale accuracy by reducing the scale factor.

Note that the localization system only deals with upright frontal faces. It can
not be used to test the effect of rotational errors, which is actually independent
of the scanning parameters.

We decided to test two different versions of the localization system, as follows:

(1) The first system, FLshift, uses larger values for horizontal and vertical
step factors. This system is expected to introduce more errors in trans-
lation.
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(2) The second system, FLscale, uses finer translational step factors, but a
larger scale factor, expected to introduce errors in scale.

We thus have two scenarios. We want to verify that our KNN function is able
to measure which is the best FL system, or in other words the one which min-
imizes the FV error. Table 2 compares the localization errors obtained with
the deye criterion (second column) computed using equation (15), our proposed
function (third column) computed using equation (13), and the actual verifi-
cation score decomposed into its FAR, FRR and HTER components (last 3
columns), on all the accesses of the BANCA database using protocol P and
the DCT/GMM FV system. Basically, several conclusions can be drawn from
this table:

Table 2
Comparison of two FL performance measures for two face localization systems as
well as for a perfect localization (ground-truth). The last 3 columns contains the
face verification score in terms of FAR, FRR and HTER for the DCT/GMM system.

FL Systems Measures Verification

Eeye EKNN FAR [%] FRR [%] HTER [%]

ground-truth 0.00 0.05 15.1 23.9 19.5

FLshift 0.10 0.12 11.7 30.3 21.0

FLscale 0.04 0.15 14.7 33.8 24.3

(1) As expected, the best verification score (HTER = 19.5) is obtained with
perfect localization (first conclusion of Section 4.1). Then follows the
FLshift system, which yields an HTER of 21.0 and finally the FLscale
system with an HTER of 24.3. This ordering was also expected, following
the third conclusion of Section 4.1.

(2) Our proposed function correctly identifies the best localization system
(FLshift, the system which minimizes the FV error), while the deye-based
measure fails to order the two modules. This can be mainly explained
because the deye measure does not differentiate errors in translation, shift
or rotation, while the DCT/GMM FV system is more affected by a certain
type of error (third conclusion of Section 4.1).

(3) The KNN almost perfectly predicts the FRR delta between the FL sys-
tems and the ground-truth (0.12 − 0.05 ≃ (30.3 − 23.9)/100 and 0.15 −
0.12 ≃ (33.8− 30.3)/100). Remember that only client accesses were used
to train the KNN function (Section 6.1).

(4) We remark that the FAR corresponding to the FLshift system (11.7) and
the FLscale system (14.7) are lower than the FAR with perfect localiza-
tion (15.1). This is because of impostor accesses, a bad face localization
only pushes the system to reject more accesses (including impostors ac-
cesses), yielding a lower FAR.
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Furthermore, the proposed KNN measure only takes 20 ms on a PIV 2.8 Ghz
to evaluate an image access, while it would take 350 ms for the DCT/GMM
system (preprocessing, feature extraction and classification).

7 Conclusion

In this paper, we have proposed a novel methodology to compare face lo-
calization algorithms in the context of a particular application, namely face
verification. Note that the same methodology could have been applied to any
other task that builds on localization, such as face tracking. We have first
shown that current measures used in face localization are not accurate for
localization. We have thus proposed a method to estimate the verification er-
rors induced specifically by the use of a particular face localization algorithm.
This measure can then be used to compare more precisely several localization
algorithms. We tested our proposed measure using the BANCA database on
a face verification task, comparing two different face localization algorithms.
Results show that our measure does indeed capture more precisely the dif-
ferences between localization algorithms (when applied to verification tasks),
which can be useful to select an appropriate localization algorithm. Further-
more, our function is robust to the training dataset (training on XM2VTS and
test on BANCA) and compared to the DCT/GMM face verification system,
the KNN performs more than 15 times faster. Finally, in order to compare FL
modules, we do not need to run face verification on the entire database, but
we only use our function on a subset of face images.

In this paper we used a KNN to estimate the target function. Given Figure 5,
the KNN could probably be replaced by a simpler parametric function. For
example, under the reasonable assumption that the final error is a simple
combination of scale, shift, and rotation errors, the resulting function could
be a simple combination of four polynomial functions.

In fact, one can view the process of training a localization system as a selection
procedure where one simply selects the best localization algorithm according to
a given criterion. In that respect, an interesting future work could concentrate
on the use of such a measure to effectively train a face localization system for
the specific task of face verification.
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A From deye to ∆ Measures

In this appendix, we explain how to compute the ∆ values (first column of
Table 1) corresponding to deye = 0.2.

Each type of localization error is examined independently. For the four cases
(∆x, ∆y, ∆s and ∆α), we have d(Cl, C̃l) = d(Cr, C̃r)). If we set D = d(Cl, Cr)
(distance between the true eye positions), equation (1) can be rewritten as:

deye =
d(Cl, C̃l)

D
. (A.1)

We now examine each type of error:

• x translation

We have: d(Cl, C̃l) = | ~dx|
From (A.1) and (2), we obtain:

∆x = ±deye. (A.2)

• y translation

We have: d(Cl, C̃l) = | ~dy|
In the same way, from (A.1) and (3), we obtain:

∆y = ±deye. (A.3)

• scale

An error in scale only induces a perturbation along the x axis. We set D′ =
d(C̃l, C̃r) (distance between the detected eye positions) and we distinguish
two cases:

(1) D′ > D : d(Cl, C̃l) = D′
−D
2

From (A.1) and (4): deye = ∆s−1
2

,

(2) D′ < D : d(Cl, C̃l) = D−D′

2

From (A.1) and (4): deye = 1−∆s

2
, then:

∆s = 1 ± 2deye. (A.4)

• rotation

An error in rotation induces a perturbation both along the x and y axis. For

clarity, we define ~v =
−−→
ClC̃l. The distance between the true and the detected

left eye position d(Cl, C̃l) can then be written as:

d(Cl, C̃l) =
√

v2
x + v2

y (A.5)
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Fig. A.1. vx and vy translation error induced by an error in rotation.

where vx = ||~vx|| and vy = ||~vy||, x and y components of vector ~v. By
combining (A.1) and (A.5), we get:

deye =

√
v2

x + v2
y

D
. (A.6)

According to Figure A.1, we have:

vx =
D

2
sin ∆α , (A.7)

vy =
D

2
(1 − cos ∆α) . (A.8)

Using (A.7) and (A.8) in (A.5) we get:

deye =

√
(D

2
)2 sin2 ∆α + (D

2
)2(1 − cos ∆α)2

D

deye =

√
sin2 ∆α + cos2 ∆α + 1 + 2 cos∆α

4

deye =

√
1 − cos ∆α

2

which finally leads to:

∆α = ± arccos (1 − 2d2
eye). (A.9)
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From our choice of deye = 0.2 and equations (A.2),(A.3), (A.4) and (A.9), we
get the following ∆ values:

∆x1,2
=±0.2

∆y1,2
=±0.2

∆s1
=0.6

∆s2
=1.4

∆α1
=23◦

∆α2
=−23◦
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