
Invariances in Kernel Methods: From Samples

to Objects

Alexei Pozdnoukhov, Samy Bengio

IDIAP

CP 592, Rue de Simplon, 4

CH-1920 Martigny, Switzerland

e-mail: {pozd, bengio}@idiap.ch

Tel: +41 027 7217765

Fax: +41 027 7217712

Abstract

This paper presents a general method for incorporating prior knowledge into kernel
methods such as Support Vector Machines. It applies when the prior knowledge can
be formalized by the description of an object around each sample of the training set,
assuming that all points in the given object share the same desired class. A number
of implementation techniques of this method, based on hard geometrical objects and
soft objects based on distributions are considered. Tangent vectors are extensively
used for object construction. Empirical results on one artificial dataset and two
real datasets of Electro-Encephalogram signals and face images demonstrate the
usefulness of the proposed method. The method could establish a foundation for an
information retrieval and person identification systems.

Key words: kernel methods, SVM, invariances, tangent vectors
PACS:

1 Introduction

Prior knowledge is often used in machine learning algorithms to constrain mod-
els towards reasonable solutions. One such class of prior knowledge relates to
invariances. These are transformations of the inputs that leave the outputs
unchanged. The general setting of including invariances into kernel methods
was considered by Burges (1999). One of the widely used practical methods
for incorporating invariances into Support Vector Machines (SVMs) is the Vir-
tual Support Vector method, based on generating artificial samples from the
current Support Vectors of the problem (Scholkopf et al. (1996)). The method

Preprint submitted to Elsevier Science 24 February 2006

performed particularly well on an optical digit recognition task. Another gen-
eral way is to modify the cost function of the algorithm in order to penalize
solutions not following the invariance properties. One such method (though
not really suitable for large-scale datasets) was developed by Chapelle et al.
(2002). Finally, a method of DeCoste and Burl (2000) called “kernel jittering”
combines the generation of artificial examples with kernel modification. We
do not consider here a number of application-specific methods.

In this paper, we present yet another approach to the problem, which assumes
that the prior knowledge can be formalized as a mapping of a special kind. This
mapping transforms each sample into an object in such a way that it includes
the prior knowledge, similar to that done in the Tangent Distance approach
of Simard et al. (1998) applied to neural networks. The method does not
lead either to enlarged training sets or to modification of the cost function as
opposed to other techniques. It simply exploits standard SVM optimization
algorithms. It combines generative and discriminative approaches by use of
local models (objects) based on training samples.

The rest of the paper is organized as follows. The general idea is presented in
Section 2, as well as two implementations for hard geometrical (Section 3.1)
and soft distribution-based objects (Section 3.2). We give links to several other
apporaches in Section 4. Section 5 presents the experiments on artificial data
where we illustrate the performance of the proposed method, and on two real
datasets, where the first task is to classify EEG signals for a Brain-Computer
Interface system and the second is devoted to a number of classification tasks
in the area of face recognition or person identification. Section 6 completes
the paper with a discussion and conclusions.

2 From Samples To Objects

Suppose we have some understanding of our data that can be formalized as a
transformation of the inputs that leaves the outputs unchanged. For example,
in a 2D image classification task we are often given the evident knowledge
that small rotations and translations of the raw images do not affect the de-
sired output class. Suppose the representation of the data (the set of features)
allows us to describe the desired transformation as a mapping that leaves the
outputs unchanged. The mapping applied to every sample produces a set of
corresponding objects, which becomes a point of our consideration. In other
words, we assume that given some understanding of the data we are able to
generalize each sample into the equivalence class - the object in the input
space. By doing this we aim to capture some prior similarities in the data.
If this formalization is successfully performed, it is possible to deal with ob-

jects instead of samples when solving our particular learning problem. We will

2

consider several kinds of such objects below.

2.1 Hard Objects

We define “hard” objects by the following geometrical transformation

xi 7→ Sxi
= {ϕα(xi), α ∈ Λ} (1)

where we denote the data samples by xi. Function ϕα(.) defines a set in the
input space through the admissible set Λ of parameters α. For example, one
can consider segments instead of points xi, as defined below in (10).

2.2 Soft Objects

Instead of using hard geometrical objects one can define an object as a local
distribution of the kind

xi 7→ p(x|xi, ri), (2)

where ri is a vector of parameters of the local distribution p(x|xi, ri). This
distribution is constructed in a way to describe the desired local transforma-
tions of a sample. It represents the probability that a given point x is in fact
a (transformed) sample xi.

Though a uniform distribution on the bounded support can be considered as
a hard object, we still discriminate the hard/soft cases due to the different
underlying approaches used to define the kernel functions.

2.3 Objects Based on Tangent Vectors

One evident way to create objects from samples is to use the tangent vector

approach. Tangent vectors were extensively used in the work of Simard et
al. (1998) to introduce invariances. We will partly follow the notations of
their paper. A good intuition for the following equations lies in considering
2D images on the plane (ξ, ψ). The intensity of the image is defined by some
function U(ξ, ψ). It provides a high-dimensional input vector x for a given
discrete set of coordinates (ξ, ψ).

3

Suppose the 2D transformation of the image plane tα we want to be invariant
to is defined by the set of parameters α in some region of D ⊂ R2:

tα : D ⊂ R2 7→ tα(D) ⊂ R2, (3)

where α is a J-dimensional vector which parametrises the transformation.
This transformation is assumed to be differentiable with respect to α and
(ξ, ψ) ∈ D, and reduces to the identity transformation for some value of α0.
Then the object generated by this transformation and associated with an
image U is defined by

S(U, α) = U ◦ t−1
α , α ∈ Λ, (4)

where Λ is some admissible set of parameters α. In the case of J local trans-
formations one can linearly approximate S(U, α) as follows:

S1(U, α) = U +
J
∑

j=1

(αj − α0
j)Lαj

(U), (5)

where Lαj
(U) are local transformations of U defined by:

Lαj
(U) =

∂S(U, α)

∂αj

∣

∣

∣

∣

∣

α=α0

. (6)

Note that Lαj
are operators that generate the whole space of local transforma-

tions (a Lie algebra of local transformations). For example, three operators of
X-translation, Y-translation and rotations about the origin produce a transfor-
mation (and a corresponding object) of all possible translations and rotations.
Tangent vectors ℓj(x) can be obtained by discretising the result of applying
the operators Lαj

to the continuous image U which correspond to a discrete
sample x.

The examples of tangent vectors calculation for widely used transformations
such as rotations and scaling are shown below:

• Rotation:

tα =
(

cosα
sinα

− sinα
cosα

)

, Lrotα = ψ ∂
∂ξ

− ξ ∂
∂ψ
. (7)

• Scaling:

tα =
(

1+α
0

0
1+α

)

, Lscα = ξ ∂
∂ξ

+ ψ ∂
∂ψ
. (8)

4

If Λ = RJ , (4) is an J-dimensional differentiable manifold and (5) is a corre-
sponding linear tangent manifold which is used in the tangent distance method
of Simard et al.(1998). However, tangent vectors can hardly model the trans-
formation of complex images, such as faces, providing acceptable results only
for small values of αi. Therefore, the bounded set of parameters α ∈ Λ can be
used. Since every parameter αi corresponds to a transformation we intend to
be invariant to, then the choice of the set Λ defines the influence of this or that
type of prior information on the invariances. Later, we will use tangent vectors
for the construction of specific distributions which represent soft objects.

2.4 Objects Based on Sample Models

In general there is no need to build identical objects for every sample. Consider
an example from Optical Character Recognition (OCR). There is no need to
build an object which represents a set of symmetrically rotated characters
for every sample of the database. A number of characters may appear to be
rotated significantly already and the latter object representation would make
them worse by rotating them unreasonably much.

So far, object construction can also be thought of as follows. Suppose we have
an (output-independent) model Ψ(.) for the samples we are dealing with. The
model represents our knowledge of the sample’s properties and can be of a very
general kind. Given a sample from the dataset, the model transforms it into
an object based on some estimated sample-dependent parameters: objecti =
Ψ(samplei). Following the example from OCR, suppose we estimated the angle
a digit character is rotated by, hence an object will be constructed to describe
basically the rotation in the opposite direction.

However, practical implementation of this approach requires solving the tasks
of application-dependent model construction and estimation of model param-
eters, which are rather complicated and will not be considered further here.

3 Kernels for Objects

There are two major ways to make use of objects in kernel methods. Gener-
ally, one would like to formulate a criterion for a learning algorithm directly
for objects. For example, a criterion can be to maximise the margin between
objects of different classes. One of the first attempts for constructing an algo-
rithm of this type was recently proposed by Graepel et. al (2003). We explore
here another approach based on defining a kernel function for objects, which
can be used in a standard algorithm like SVM.

5

3.1 Kernels for Hard Objects

Since we apply our knowledge directly and deal with objects in the input space,
it is reasonable to deal with distance-based kernels that have clear intuitive
interpretation as a measure of similarity.

Suppose one uses a distance-based kernel, for example the commonly used
Gaussian Radial Basis Function (RBF) kernel:

K(xi, xj) = e
−ρ(xi,xj)2

2σ2 , (9)

where sample-to-sample distance in the input space is defined by ρ(xi, xj)
2 =

‖xi − xj‖2 and σ2 is the variance of the kernel.

Substituting the object-to-object distances into the kernel, one includes the
prior knowledge into the algorithm. The problem here is to provide a way to
compute distances between objects efficiently. In the following subsections we
give some simple examples of distances that can be derived analytically and
calculated efficiently.

3.1.1 Linear Scaling

Consider the linear transformation

x 7→ Gx = {αx, α ∈ [a, b]} (10)

where a, b ∈ R1. This transformation corresponds to a brightness change of
the image (given a raw image representation) or to an amplitude scaling of the
signal. Note that in general for a finite range of α this transformation cannot
be taken into account by simple normalization of the input data.

Consider the distance given by:

ρ(x,G(x̂))2 = (x− |α∗|[a,b]x̂)2, α∗ =
x · x̂
x̂2

, (11)

where |g|[a,b] is defined as a if g < a, b if g > b, and g otherwise. This is
simply the distance between x and the segment Gx̂ = [ax̂, bx̂] of the line
corresponding to the directing vector x̂. We will use a symmetrized sample-to-
segment distance in the experiments below for an illustrative artificial example
(Section 5.1). As we will see, even one-sided sample-to-object distance pro-
vide promising performance for introducing invariances into the classification

6

model. This is also illustrated in the real task of EEG signals classification
(Section 5.2). More generally, one has to take into account computational
efficiency when deciding between one-sided and two-sided distances. If the
two-sided distance can be computed reasonably fast, it should be the method
of choice.

3.1.2 Translations

The second example is a particular case of translation invariance, i.e. the
desired transformation is

x 7→ Px = {eiti + x; ti ∈ [−tlimi , tlimi]}, (12)

where ei are the basis vectors of the input space RN and tlimi is the maximum
allowed translation in dimension i, with i = 1, 2, ..., N . It corresponds to the
mapping into an interior of the cuboid whose “center” is vector x and all the
edges are parallel to the axes. This transformation corresponds to a speckle
noise in the image and its use will be illustrated experimentally in Section
5.3.

The distance between vector x and cuboid Px̂ is given by minimization of

ρ(x, Px̂)
2 = min

~t
(x− Px̂(~t))

2, (13)

over the set of parameters ~t = {t1, t2, ...tN} and can be calculated as follows:

ρ(x, Px̂)
2 =

N
∑

i=1

((xi − x̂i) − |xi − x̂i|[−tlimi ,tlimi])
2, (14)

where xi, x̂i are the components of the corresponding vectors.

The distance between two objects defined by (12) can be similarly computed
with

ρ(Px, Px̂)
2 =

N
∑

i=1

∣

∣

∣|xi − x̂i| − 2tlimi

∣

∣

∣

[0,∞]
. (15)

We will use this distance later for noisy image classification (Section 5.3).

7

3.1.3 Object to Object Distances

Using the sample-to-object distances, we take into account some prior knowl-
edge but still use a kernel matrix that might not be positive definite. One can
use an average of two sample-to-object distances to make the kernel matrix
symmetric. Ideally, an object-to-object distance may be preferable, but its cal-
culation is often quite a difficult task and can not always be easily performed.
For the considered examples it is possible to compute segment-to-segment and
box-to-box distances (15).

In general, the computation of the Euclidean distance between the objects
leads to a constrained optimization problem. Consider two objects S(x, α)
and Ŝ(x̂, α̂). We approximate the Euclidean distance between them with the
Euclidean distance between their linear approximations:

ρ(S, Ŝ)2 ≃ ρ(S1, Ŝ1)
2 = min

α,α̂

(

x− x̂+
L
∑

i=1

αiℓαi
(x) − α̂iℓα̂i

(x̂)

)2

, (16)

subject to

αi ∈ [αmini , αmaxi], α̂i ∈ [α̂mini , α̂maxi]. (17)

This problem can be considered as a Nearest Point Problem and a number of
simple iterative methods such as Gilbert’s or Mitchel-Demyanov-Malozyomov
algorithms (which are also used for SVM training) can be applied for distance
minimization (e.g. Keerthi et al. (1999) and references therein). By control-
ling the maximum number of iterations one defines a trade-off between accu-
racy and speed. The unconstrained problem (16) corresponds to the Tangent
Distance method. Its direct application for SVM kernels was considered by
Haasdonk and Keysers, 2002.

3.2 Kernels for Soft Objects

Given a soft object in a form of local distributions centered at each sample,
one can apply a number of approaches developed in statistics for comparing
two distributions. We first introduce here a special kind of distribution which
makes use of tangent vectors. Next, we present some methods for defining the
corresponding kernels.

8

3.2.1 Local Distributions based on Tangent Vectors

Suppose the transformation we want to be invariant to defines a differentiable
manifold in the input space. Hence the tangent vectors can be defined as
described above, and the whole set of tangent vectors can be used to model all
the local linear transformations of the given image. Let us define the following
function H which gives the measure of proximity of a given vector x to the
linear span of some vector x′ generated with a tangent vector ℓj :

H(x|x′, ℓj) = e
−

(x−x′)2ℓ2
j
−((x−x′)·ℓj)2

2γ2
wℓ2

j , (18)

where γw is the parameter related to the width of the proximity region.

The following distribution Ks describes a similarity between given sample x
and an object based on sample x′ generated by a set of corresponding tangent
vectors {ℓ1, ...ℓJ}:

Ks(x, x
′) = e−

(x−x′)2

2σ2 ·
J
∏

j=1

(η +H(x|x′, ℓj)) (19)

where σ is a bandwidth and the real number η ∈ [0, 1] defines the shape of
the distribution. The idea behind this formula is to combine several single
proximity measures (18) into the general one. The extra parameters were
introduced in order to control the influence of this or that type of invariance.

Assuming η = 0 in (19) and applying normalization, one can reduce (19) to a
standard Gaussian:

Ks(x, x
′) = e

−(x−x′)T L−1
x′

(x−x′)

(2π)N/2|Lx′ |
1/2 , where :

L−1
x′ =

(

1
2σ2 + J

2γ2
w

)

I −
J
∑

j=1

ℓjℓ
T
j

2γ2
wℓ

2
j
,

(20)

where I is an identity matrix, and |...| denotes the determinant. This repre-
sentation will be extensively used below for kernel evaluation.

3.2.2 Tangent Vector Kernels

The simplest way to use the latter distribution for introducing invariances into
kernel methods is to consider (19) as a one-sided (sample-to-object) similarity

9

measure. Then, a two-sided kernel Kd can be obtained by taking the following
average:

Kd(x, x
′) =

1

2
(Ks(x, x

′) +Ks(x
′, x)). (21)

The proposed kernel combines the advantages of both VSV and Tangent Dis-
tance approaches. In this approach we not only analytically include the Virtual
SV into the model (without putting them into the data), but also take into
account all the linear combinations of invariant transformations of interest.
Moreover, using all the tangent vectors which correspond to linear transfor-
mations, one can take into account all the possible local linear transformations
of an image.

The proposed kernel (19)-(21) is not the only possible one to make use of the
tangent vectors. Other kernels can be constructed in a similar way to the one
presented by combining the terms (18) in a different manner.

3.2.3 Distribution-based Tangent Vector Kernels

To be consistent in the sample-to-object approach, let us consider the distri-
butions (18) defined for every sample. We introduce the Distribution-based
Tangent Vector Kernel (DB TVK) as follows. The kernel can be obtained by
measuring the overlap of two distributions that correspond to the object based
on samples x and x′. To do this we introduce the following kernel between two
distributions:

KB(x′, x′′) =
∫

Ks(x, x
′)ρKs(x, x

′′)ρdx, 0 ≤ ρ ≤ 1, (22)

which is a dot product in the space of functions Ks(., x
′) and was called the

probability product kernel in Kondor and Jebara (2004).

The closed form of KB(x′, x′′) can be obtained for a number of cases. For η = 0
and using equation (20), KB(x′, x′′) reduces to integration of Gaussians and
can be expressed as follows:

KB(x′, x′′) = (2π)
(1−2ρ)N

2

∣

∣

∣L̂
∣

∣

∣

1
2 |Lx′|−

ρ
2 |Lx′′|−

ρ
2

exp(−ρ
2
x′TL−1

x′ x
′ − ρ

2
x′′TL−1

x′′ x
′′ + 1

2
x̂T L̂x̂)

(23)

where L̂ = (ρL−1
x′ + ρL−1

x′′)
−1 and x̂ = ρL−1

x′ x
′ + ρL−1

x′′ x
′′.

A closed form equation for the distribution-based tangent vector kernel can
also be derived for η 6= 0 and ρ = 1, which is more interesting but yields an

10

even more cumbersome expression. We consider this case in the next section.

3.2.4 Making Distribution-based TVK practical

Direct implementation of the proposed DB TVK demands costly computa-
tions. Therefore, we propose here a practical way to compute (22). It consists
of computing the approximation of the integral (22) for η 6= 0, ρ = 1 and
Ks(x, x

′) as presented in (19). Note that we fixed ρ = 1, hence the latter
approximates the corresponding expected likelihood kernel. The following ap-
proximation can be used:

KB(x′, x′′) = I0 + (1 +
σ2

2γ2
w

)
1−D

2

J
∑

j=1

(I ′j + I ′′j) + ..., (24)

where

I0 = e−
(x′−x′′)2

4σ2 . (25)

The term I0 correspond to the RBF kernel between samples x′ and x′′. The
terms I ′j and I ′′j correspond to the impact of jth invariance of the samples x′′

and x′ to the samples x′ and x′′ correspondingly. The exact expressions of
I ′j and I ′′j are quite cumbersome. We present here the general idea only. The
expansion of (22) with terms given by (19), ρ = 1 and η = 1 consist of the
sum of products. One can neglect the terms which include the products of
three and more exponents. Then the integration of the rest terms is analogous
to (23). This approximation requires only O(J ·N) operations to compute.

The impact of invariances reduces as the input dimension increases. For very
high dimensional input spaces its influence vanishes, and the only term that
matters is I0. We’ve faced this problem in our experiments, which we describe
later in Section 5.4.

4 Analysis and Links to Other Methods

4.1 Links with Kernel Jittering and Virtual SV

The distance between hard objects is a distance between some of the points
the objects consist of. The points that give minimum to the distance effec-
tively affect the model and can be considered as virtual samples. This allows
interpretation of the described approach as a kind of virtual sample approach

11

with automated choice of virtual samples, which may differ for every pair of
objects. Furthermore, virtual samples can be used to replace tangent vectors
with finite difference vectors. It appeared to be useful in our face classification
experiments (see Section 5.3).

In analogy with the Virtual Support Vector approach of Scholkopf et al.(1996),
one can define objects based on pre-determined support vectors only to en-
hance the speed of the algorithm.

The method of kernel jittering was proposed by DeCoste and Burl (2000).
It combines artificial sample generation and kernel function modification as
follows. Consider two samples, xi and xj and the corresponding non-jittered
kernel function Kij. Assume sample xj could have been any of a set of values
around xj according to a “jittering” function. Consider the transformed (“jit-
tered”) forms of the sample xj , including itself, and select one (xq∗) closest
to xi in the feature space according to the Euclidean distance in the feature
space:

q∗ = arg min
q

√

Kii − 2Kiq +Kqq. (26)

The new “jittered” kernel for the examples xi and xj is simply Kiq∗ . This idea
can be interpreted as follows. Believing that transformed examples belong to
the same class, kernel jittering corresponds to a kernel based on the distance
between the sets generated from the examples by the allowed transformations.

The main drawback of the jittering approach is the need to do a lot of ker-
nel calculations while selecting the minimal distance (26). The approach also
requires that we do these calculations during the testing phase.

The distance-based methods proposed above can be considered as an analytical
jittering. It does not suffer from the drawbacks described above, however it
introduces valuable restrictions on the allowed transformations.

4.2 Vicinal Risk Minimization

Vapnik (2000) considered local distributions(soft objects) instead of samples
to introduce the Vicinal Risk Minimization (VRM) learning principle. Defin-
ing the vicinities of the training samples and assuming some local density
p(x|xi, ri) therein, one obtains the following Vicinal Risk functional:

Rvic(α) =
1

ℓ

ℓ
∑

i=1

L

(

y −
∫

f(x, α)p(x|xi, ri)dx
)

, (27)

12

where xi is a training sample and ri is its vicinity parameter. Minimizing
(27) instead of empirical risk is called the Vicinal Risk Minimization (VRM)
principle.

Vapnik mentions how to use the VRM principle to incorporate an invariance
into the learning algorithm. Using the density functions p(x|xi, ri) defined
on the non-symmetrical support that describes the invariance to the desired
transformation, one enforces the learning algorithm to obey the invariance’s
properties.

The following Vicinal Support Vector algorithm is obtained by Vapnik (2000):

f(x) =
ℓ
∑

i=1

β∗
iD(x, xi) + b, (28)

where the β∗
i coefficients are such that

β∗ = arg max
β

ℓ
∑

i=1

βi −
1

2

ℓ
∑

i,j=1

yiyjβiβjM(xi, xj), (29)

subject to the constraints:

ℓ
∑

i=1
yiβi = 0,

0 ≤ βi ≤ C.

(30)

Functions D(x, xi) and M(xi, xj) are one- and two-vicinal kernels correspond-
ingly:

D(x, xi) =
∫

K(x, x′)p(x′|xi, ri)dx′, (31)

M(xi, xj) =
∫∫

K(x, x′)p(x|xi, ri)p(x′|xj , rj)dxdx′. (32)

4.2.1 Scaling Invariance

Let us now present a simple example. To obtain the invariance described by
(1) with β = 0, consider the following vicinity density function:

p(x|xi, γ) =
1√
2πγ

∫

δ(x− (1 − α)xi)e
− α2

2γ2 dα, (33)

13

where δ is the delta function, and the γ parameter defines the width of the
vicinity and, hence, the influence of scaling invariance.

Substituting (33) in both (31) and (32) using the standard isotropic RBF
kernel function given in (9) with the bandwidth parameter σ gives:

D(x, xi) =
σ

κ
e−

(x−xi)
2

2κ2 e−
γ2

2σ2κ2 (x2x2
i −(x,xi)

2) (34)

and

M(xi, xj) =
σ2

η
e
−

σ2(xi−xj)2

2η2 e
− γ2

η2 (x2
i x

2
j−(xi,xj)

2)
, (35)

where the following definitions were used:

κ2 = γ2x2
i + σ2, (36)

η2 = γ2σ2(x2
i + x2

j) + γ4(x2
ix

2
j − (xi, xj)

2) + σ4. (37)

The resulting kernels are still RBF-based. The “effective” kernel bandwidth
depends both on the σ and γ parameters and on the samples xi and xj . One
can note the similarity of (34)-(35) to the kernels presented before.

5 Applications and Experiments

It is often difficult to formulate real-life problems in a way suitable for object
definition in the input space. For example, it is difficult to define objects
that correspond to the invariances of interest in image processing such as 3D
rotations with changing lighting conditions. This is one of the drawbacks of
the described approaches.

We present a series of experiments illustrating the proposed approaches. These
are an artificial two-class classification task, a problem of EEG signals classi-
fication and a number of face image classification tasks.

5.1 Artificial Data

To illustrate the action of the considered methods, we used an artificial dataset
generated to be invariant to (10). The goal is thus to illustrate the influence
of the modified kernels on the decision boundary.

14

Fig. 1. Artificial two-class classification problem. Black training points have to be
discriminated against white training points. Left: Original decision function of an
SVM with RBF kernel (σ = 0.2), Center: decision function using slightly jittered
kernel, Right: decision function facing full invariance.

Figure 1 illustrates the training data for both classes and the decision bound-
aries obtained with the following algorithms: the left image shows the original
SVM with RBF kernel (σ = 0.2); the center one shows an SVM with RBF
kernel (σ = 0.2) and distance defined by (11) with a = 0.5, b = 2; finally, on
the right we see an SVM with RBF kernel (σ = 0.2) and distance defined by
(11) with a = 0.01, b = 10. The substantial difference between the presented
solutions lies in the number of support vectors, which is 20 for the standard
solution (left figure) and 8 for the modified one (right figure). Note, that given
the knowledge of global scaling invariance (Equation (10) with α ∈ R1) one
could obtain the right solution by simply using input normalization. However,
this is not the case if the scaling is bounded (Equation (10) with α ∈ [a, b]).
VRM-based approach described in Section 4.2 results in similar solutions.

5.2 EEG Signals Classification

The next series of experiments used EEG signals taken from the first compe-
tition devoted to Brain-Computer Interface system design. The competition
was organized after the NIPS’01 Brain Computer Interface workshop. The
task is to classify the signals that correspond to imaginary movements of the
left or right hand. The original data consists of signals taken from different
electrodes located on a human’s head. The difference between two particular
signals (from the C3 and C4 electrodes, according to the standard labeling)
was taken as input for the algorithm. The data were resampled to 100Hz, the
input dimension (the signal length) is 150. The dataset consists of 413 training
and 100 testing samples. The details of data collecting and problem settings
can be found at [http://newton.bme.columbia.edu/competition.htm].

Raw data usage may appear not to be the best way of carrying out classifi-
cation. However, it was found to work well for SVMs. For example, the clas-
sification performance based on auto-regressive coefficients was significantly

15

Table 1
Experimental results on the EEG dataset

Algorithm Testing Error, %

EEG SVM 9

Segment-based SVM 6

VRM-based SVM 6

worse. The evident properties of these data are the invariances to the signal
amplitude and the selection of the reference point of the “zero” level of the
signal. These findings are also justified by the physical conditions of the EEG
signal measuring process.

The results for the baseline SVM classifier based on Gaussian RBF kernel
and SVMs with modified kernels (as derived in Sections 3.1.1 and 4.2.1) are
presented in Table 1. The hyper-parameters of all the algorithms were tuned
according to cross-validation on the training set. The obtained values are C =
25, σ = 1500. The invariance-defining parameters are γ = 0.55 for VRM-
based kernel, and for the kernel based on hard objects (segment-based SVM)
the scaling range is [0.5, 1.5].

Both methods provided an improvement of the classification performance ac-
cording to the testing error. However, this improvement is hardly statistically
significant (79% confidence only) since the size of the test set is only 100
samples. This is a basic disadvantage of the competition setting caused by
difficulties in data collection.

5.3 Face Recognition Experiments

The next example presented here deals with a real dataset obtained from a
face detector. These are faces detected on every fifth frame of a movie using a
face detector from Schneiderman and Kanade (2000). Image dimension is 81
by 81 and greyscale level is 8 bit. There were 2899 images in the database.
The data is available at [http://www.robots.ox.ac.uk/∼vgg/data]. We present
an approach to the problem of binary classification of the main actor against
all the other images captured. Hence, this task can be seen either as a person
identification or an information retrieval task.

The training set consists of every tenth image of the database, while the testing
set consists of all the other ones. We used the first thousand images of the
database, ending up with training and testing sets of 100 and 900 samples
correspondingly. Example images are presented in Figure 2.

16

Fig. 2. Examples of clean samples. Left: two random training samples. Right: three
random testing samples. The labels for class membership are shown below the im-
ages.

5.3.1 Noisy Image Classification

To illustrate the use of the method described in Section 3.1.2 we have cor-
rupted the images with an additive speckle noise. The noise is generated from
a uniform distribution with zero mean and variance 30. Example images with
noise are shown in Figure 3. Another noisy testing set was obtained by cor-
rupting the clean testing set with the same noise, and “outliers”: random 10%
of the pixels were corrupted with uniform noise with zero mean and variance
70.

Fig. 3. Examples of noisy samples. The labels for class membership are shown below
the images.

To show the performance of the method, we added noise to the testing set
only. The objective is to obtain an algorithm robust to a known type of noise
while given a clean training set only. Hence we are given a training set and a
prior knowledge about the type of noise that occurs in the testing samples.

We used the raw image as input. Standard SVMs with Gaussian RBF ker-
nel (9) were trained on the clean training set. The parameters were chosen
according to the minima of the cross-validation error. The parameters are:
σ = 3000, C = 100. Classification error on the clean testing data is 9%, 17%
on the noisy testing data and 37% on the noisy data with outliers. One pos-
sible solution to handle noise is to use denoising techniques to preprocess the
testing data before applying the SVM classifier. Different denoising techniques
such as Wiener filtering, median filtering and Gaussian bluring were used. The
best result achieved was 14% of testing error for noisy data and 34% for the
noisy data with outliers.

The SVM with an object-based kernel (15) was applied to the problem. The

17

testing error for various values of the prior parameter tlim is presented in Figure
4 for both noisy testing sets. The minima of the testing error is achieved for
the values of prior parameter tlim which correspond to the standard deviation
of the noise. The modified algorithm significantly outperforms standard SVM
on the noisy testing data. However, testing error of the modified algorithm
with tlim = 5 gives 10.8% of the testing error on the clean testing data.

Fig. 4. Testing error curve of the SVM with object-based kernel for both noisy
testing sets. X-axis: t

lim parameter, Y-axis: testing classification error rate. Testing
errors at t

lim = 0 (37% and 0.18%) correspond to standard SVM.

5.4 Invariant Face Images Classification

In order to test the proposed approaches of Section 3.2, we conducted exper-
iments using images of the faces from the database described above. All the
2899 images of the database were used. We used subsets of 300 training and
2599 testing samples. The resolution was decreased to 60x60 picsels.

We compared standard SVM with RBF kernel, Virtual Support Vector method,
Kernel Jittering, and the proposed approaches of Sections 3.2.2 and 3.2.3.
Two types of invariant transformations were studied: rotations (7) and scal-
ings (8). Some considerations of practical implementation of the approaches
are described below starting with tangent vectors evaluation.

5.4.1 Tangent Vectors and Finite Difference Vectors

There are some noticeable limitations in computing the tangent vectors. An
input image has to be smooth enough to compute gradients that would ap-
proximate local transformations of the original image. The original method
works well for binary images of digits, which were blurred with Gaussian filter
for computing the gradients. We applied the method for our data using dif-
ferent Gaussian smoothing and found that the obtained approximation from
these tangent vectors was not sufficient to describe real transformations. In-
stead we generated virtual samples by applying a finite desired transformation
and used them for computing the finite differences that were used to approxi-
mate the tangent vectors. Example transformed images obtained by rotations

18

with original gradient-based tangent vectors and finite differences are shown
in Figure 5.

Fig. 5. Two Types of Virtual Images.

The first line in Figure 5 presents images obtained by applying direct cal-
culation of tangent vectors according to (7). We can thus see that despite
the accurate tuning of Gaussian filtering and other “tricks”, only very local
rotations are reasonable.

The second line in Figure 5 presents the original sample image x in the center;
virtual samples obtained from x by applying rotations of 10 degrees are shown
on the left and right of the figure. Let us denote them as x+ℓexpleft and x+ℓexpright.
The intermediate images in between are x+ 0.5ℓexpleft and x+ 0.5ℓexpright.

The problem described here complicates the approach. Generally, one of the
baseline aspect in the proposed approach is a definition of the objects. This
has to be done in a way to describe the desired invariance in the best possible
way. For our case, it was achieved by introducing the finite difference vectors,
since their use allows for better modelling of the real-life invariances.

5.4.2 Scaling and Rotational Invariances with TVK

Since this approach implied that left and right rotations correspond to different
tangent vectors, we used the following modified Tangent Vector Kernel:

Kfd
s (x, x′) = e−

(x−x′)2

2σ2 +
J
∑

j=1

H(x|x′, ℓj) · e
−

(x−x′−ℓj)2

2γ2
r , (38)

where we introduced one extra parameter γr corresponding to the length of
proximity region. As one can see, this kernel is very similar to the particular
case of the original kernel (19), for fixed η = 1 and γr = σ. Then, due to the
reasons, discussed above in Section 5.4.1, the kernel is modified to take into
account not symmetric finite difference vectors. Note, that with this modifica-
tion, one uses more than one “tangent vector” per invariance, obtaining better
modelling of the real-life invariant transformations.

With a proper choice of parameters in (38) (γw ∼ ∞, γr = σ), the resulted
model is closely linked to VSV. The noticeable difference is that in the VSV

19

approach every virtual sample is included in the decision function with its own
weight, while in our case all the virtual samples form an object hence share
the same weight.

The parameters of the algorithms were chosen according to the minimum
of cross-validation error over the training set, resulting in σ = 600, C = 100.
Parameters γw and γr in (38) can be chosen by the following heuristics: γw ∼ σ,
and γ2

r ∼ V ar(ℓij), i.e. the variance of tangent vectors. We used γw = 500 and
γr = 1000.

5.4.3 Scaling and Rotational Invariances with DB-TVK

Despite of the problems described above, we used non modifyed Distribution-
Based TVK, as it was introduced in Section 3.2.3. The parameters were as
follows: σ = 600, C = 100, γw = 1000.

As it was mentioned above, DB-TVK has worse performance for high-dimensional
input spaces. It is clearly seen from equations in Section 3.2.4, that the impact
of “invariant” terms of the kernel reduces with dimensionality. However, we
obtained reasonable results in the presented case study.

5.4.4 Experimental Results

Table 2 presents testing errors obtained with SVM with Gaussian RBF kernel
(SVM), SVM trained with virtual samples (VSV SVM), SVM with jittered
kernel (KJ SVM) and SVM with Tangent Vector and Distribution-based Tan-
gent Vector Kernel (TVK SVM and DB-TVK SVM). We used the same virtual
samples both for VSV and KJ SVM and for computing the finite difference
vectors in TVK and DB-TVK. This is the reason of similar results obtained
with all the methods. The improvement of the testing error in comparison to
the baseline SVM is statistically significant with a 95% confidence interval.

Table 2
Testing Error

Algorithm Testing Error, %

SVM 11.2

VSV SVM 9.8

KJ SVM 10.0

TVK SVM 9.7

DB-TVK SVM 9.9

20

5.5 The Importance of Prior Knowledge for Small Datasets

Another interesting experiment is to show the relative importance of prior
knowledge with respect to the amount of available training data. We thus
split the data using every N -th sample of the entire data for training, while
the rest of the data were used for testing. Figure 6 shows the testing errors
obtained for these different partitions. The X-axis in Figure 6 corresponds to
the logarithm of the training set size and the Y-axis corresponds to the testing
error. As expected, when the number of training examples is very small, prior
knowledge is of prime importance, while its importance eventually decreases
with increased amount of training examples.

Fig. 6. SVM with RBF and TVK kernels.

6 Discussion and Conclusions

The method of prior knowledge incorporation considered in this paper results
in a kernel modification and exploits the standard SVM algorithm. The main
idea of the kernel construction is to consider an object in the input space: a set
which can be derived for each training sample by applying all known invariant
transformations. Then the kernel is defined for pairs of objects. Kernel calcu-
lation can appear to be a computationally expensive part of the algorithm,
although in the considered examples it was not the case. The method does
not lead to enlarging the training set, as it is the case for traditional virtual
samples approaches of Girosi and Chan (1995), Niyogi et al. (1998).

The proposed approach has close links with the regularization framework.
Loosely speaking, regularization is used to enforce smoothness of the function
in the vicinity of the training points. For a learning algorithm based on the
squared loss function it is shown by Leen (1999) that, under certain assump-
tions, the approaches of adding virtual samples to the training set and adding a
regularization term to the cost function are equivalent. Our approach general-
izes the virtual sample approach, and obviously it has regularizing properties.

21

Since we propose an object definition based on combining the sample and some
prior knowledge, the presented method naturally establishes a link between
kernel methods and generative models. Considering the whole structure of
local distributions, we somehow model the class density. The general approach
in this field is given in Jaakkola and Haussler (1999), where the Fisher kernel
based on a metric defined on a parametric generative probability model is
presented.

Some similar approaches were recently proposed by Kondor and Jebara (2003).
The idea there is to make a transition from samples to the sample-characterizing
distributions which are then used for kernel definition. This approach mainly
uses the distributions (objects) for data representation. As the evolution of
the previous research, Kondor and Jebara (2004) presented a similar sample-
to-object framework. This transition step was used as an intermediate one to
introduce probability product kernels. The aim of the presented research is to
focus on the prior knowledge incorporation.

In conclusion, in this paper we presented a general method to incorporate
prior knowledge into kernel methods. It is based on modifying the setting
of the problem by a transition from samples to objects, which are generated
from them using some prior knowledge. We mainly considered these objects in
the form of local distributions. Tangent Vectors were extensively used for the
construction of the latters. Several methods of kernel definition were presented
and tested in experiments on artificial and real-life data.

Acknowledgments

This research has been partially carried out in the framework of the Euro-
pean project LAVA, funded by the Swiss OFES project number 01.0412. It
supported in part by the IST Programme of the European Community, under
the PASCAL Network of Excellence, IST-2002-506778, funded in part by the
Swiss OFES. It was also partially funded by the Swiss NCCR project (IM)2.

References

C.J.C. Burges, 1999. Geometry and invariance in kernel-based methods. In:
B.Scholkopf, C.J.C. Burges, and A.J. Smola (eds.), Advances in Kernel

Methods - Support Vector Learning, MIT Press.
B. Scholkopf, C. Burges, and V. Vapnik, 1996. Incorporating invariances in

support vector learning machines. In: C. von der Malsburg, W. von See-
len, J. C. Vorbruggen, and B. Sendhoff, (eds.), Artificial Neural Networks

22

ICANN‘96, pp. 47-52, Berlin. Springer Lecture Notes in Computer Science,
Vol. 1112.

O. Chapelle and B. Scholkopf, 2002. Incorporating invariances in nonlinear
SVMs. In: T.G. Dietterich, S. Becker and Z. Ghahramani, (eds.),Advances

in Neural Information Processing Systems, vol. 14, pp. 609-616. MIT Press,
Cambridge, MA, USA.

D. DeCoste, M.C. Burl, 2000. Distortion-invariant recognition via jittered
queries. In Computer Vision and Pattern Recognition, CVPR-2000, June.

Haasdonk, D. Keysers. Tangent Distance Kernels for Support Vector Ma-
chines. In the proc. of ICPR’02, Vol.2, pp. 864-868.

P. Simard, Y. LeCun, J. Denker, B. Victorri, 1998. Transformation invariance
in pattern recognition, tangent distance and tangent propagation. In: G.
Orr and K. Muller, (eds.), Neural Networks: Tricks of the trade. Springer.

V. Vapnik, 1998. Statistical Learning Theory. J.Wiley, NY, 1998.
O. Chapelle, J. Weston, L. Bottou, and V. Vapnik, 2001. Vicinal risk mini-

mization. In: T.K. Leen, T.G. Dietterich, and V. Tresp, (eds.), Advances in

Neural Information Processing Systems, vol. 13, pp. 416-422.
V. Vapnik, 2000. The Nature of Statistical Learning Theory. Second edition,

Springer-Verlag, NY.
T.K. Leen, 1995. From data distributions to regularization in invariant learn-

ing. Neural Computation, vol. 7, no. 5, pp. 974-981.
T. Jaakkola, and D. Haussler, 1999. Exploiting generative models in discrim-

inative classifiers. In: M.S.Kearns, S.A.Solla, D.A.Cohn (eds.) Advances in

Neural Information Processing Systems, vol. 11, pp. 487-493, MIT Press.
S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy, 2000. A Fast

Iterative Nearest Point Algorithm for Support Vector Machine Classifier
Design. IEEE Transactions on Neural Networks, 11(1), pp.124−136.

R. Kondor, T. Jebara, 2003. A Kernel Between Sets of Vectors. In proceedings
of the Twentieth International Conference on Machine Learning (ICML-
2003), Washington DC.

R. Kondor, T. Jebara, A. Howard, 2004. Probability Product Kernels. Journal
of Machine Learning Research 5(2004), pp.819−844.

F. Girosi, and N. Chan, 1995. Prior Knowledge and the Creation of Vir-
tual Examples for RBF Networks. Neural Networks Signal Processing Pro-
ceedings of the 1995/IEEE-SP/Workshop, IEEE Signal Processing Society,
Cambridge, MA, 201-210, September 1995.

P. Niyogi, T. Poggio, and F. Girosi. Incorporating Prior Information in Ma-
chine Learning by Creating Virtual Examples. IEEE Proceedings on Intel-
ligent Signal Processing, Vol. 86, No 11, 2196-2209, 1998.

23

