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ABSTRACT

The paper presents a semi-supervised kernel method for
regression estimation in the presence of unlabeled pat-
terns. The method exploits a recently proposed data-
dependent kernel which is constructed in order to repre-
sent the inner geometry of the data. This kernel is im-
plemented into Kernel Regression methods (SVR, KRR).
Experimental results aim to highlight the properties of
the method and its advantages as compared to fully su-
pervised approaches. The influence of the parameters
on the model properties was evaluated experimentally.
One artificial and two real-world datasets were used to
demonstrate the performance of the proposed algorithm.

1. INTRODUCTION

The problem of using unlabeled data is of increasing at-
tention in Machine Learning. By unlabeled data, we
mean those data samples which consist of the input val-
ues only, while the desired output value is unknown.
In signal processing this is the situation when the sig-
nal was registered but not classified (processed) due to
malfunction, time restrictions or by any other reasons.
Furthermore, methods making use jointly of labeled and
unlabeled data are called semi-supervised. In fact, most
real-life learning problems are actually semi-supervised.

The information one obtains from the unlabeled part
of the dataset can be of different nature. A common
approach is to consider the manifold assumption. This
implies that data actually belong to some lower dimen-
sional manifold in high dimensional input space. A large
body of literature is devoted to the exploration of such
an approach; see [1] and references therein.

Given the explosive growth of interest in the field of
kernel methods, non-parametric data-dependent kernels
which reflect the inner geometry of the data are of partic-
ular interest. A general approach was recently proposed
in [4]. Here, we implement the proposed kernel for ker-
nel regression estimators, discuss the obtained method
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and explore its properties in a number of experiments on
artificial and real data. We consider multidimensional
regression tasks and, in particular, time series prediction
with missing values.

2. SEMI-SUPERVISED LEARNING

Machine Learning approaches can be divided into super-
vised and unsupervised learning algorithms. The super-
vised learner aims at estimating the input-output rela-
tionship (dependency or function) f(x) by using a train-
ing data set {xi, yi}, i = 1, . . . , N where the inputs
x are n-dimensional vectors and the labels (or system
responses) y are continuous values for regression tasks
and discrete (e.g., boolean) for classification problems;
in unsupervised learning, however, only raw data xi are
available, without the corresponding labels yi. The algo-
rithms belonging to this group are various clustering and
(principal or independent) component analysis routines.

Furthermore, the situation where some labeled pat-
terns are provided together with unlabeled ones, arises
frequently. This is called semi-supervised learning. When
predictions have to be made to given unlabeled loca-
tions only, this particular situation is called transductive
learning. Recently several approaches to semi-supervised
learning were proposed. The LDS algorithm [2], Trans-
ductive SVM, Graph and Gradient Transductive SVM [3],
and a group of Manifold Learning methods [1] are the
core of those recently developed techniques.

Most of the work done in this field is related to fully
unsupervised tasks or semi-supervised classification prob-
lems. Semi-supervised regression methods are, however,
much less studied. In this paper, we combine recent de-
velopments in the field of manifold learning with kernel
regression learners such as Support Vector Regression
and Kernel Ridge Regression.

3. DATA DEPENDENT KERNELS

A semi-positive definite function which satisfies Mercer
conditions is called a kernel. This implies that it cor-
responds to a dot product in some space (Reproducing
Kernel Hilbert Space, RKHS), sometimes referred to as



a feature space. Generally, given a (linear) algorithm,
which includes data samples in the form of dot prod-
ucts only, one can obtain a (non-linear) kernel version
of it by substituting the dot products with kernel func-
tions [5]. The choice of the kernel function is an open
issue. Using some typical kernels like Gaussian RBF,
one takes into account some knowledge (distance-based
similarity of the samples). However, neither the inner
geometry of the data nor local structures are reflected
with this choice. Hereafter, we briefly present a method
of [4] for constructing non-parametric semi-supervised
kernels which eliminate these drawbacks. We will fol-
low the notation of [4]. Given data points {x1, . . . ,xn},
and some RKHS H, consider the evaluation map S(f) =
(f(x1), . . . , f(xn)); S : H → Rn. The semi-norm on Rn

is given by a symmetric semi-definite matrix M ,

‖S(f)‖2 = fT Mf , (1)

where we denoted f = (f(x1), . . . , f(xn)) and T means
transpose. The exact explicit form of the corresponding
reproducing kernel k̃(x,x′) was derived in [4] and is given
by:

k̃(x,x′) = k(x,x′)− kT
x (I + MK)−1Mkx′ (2)

where K is the complete kernel matrix of k(·, ·), kx rep-
resents one row of K and I is the identity matrix. In the
presence of unlabeled data, the choice of M implements
the smoothness assumption with respect to its geometric
structure. As shown in [1], this is achieved by taking
M = γL, L being the Laplacian matrix of the graph
built on unlabeled samples, and γ a regularization pa-
rameter which defines the extent of kernel deformation.
By setting γ=0 one obtains the original kernel, as it is
clearly seen with (2).

4. KERNEL REGRESSION METHODS

We state the general problem of regression estimation
as it is presented in the scope of Statistical Leaning
Theory [6]. Suppose we are given a set of observations
{(x1, y1), . . . , (xN , yN )} generated from an unknown prob-
ability distribution P (X,Y) with xi ∈ Rn, yi ∈ R and a
class of functions F = {f |Rn → R}. Our task is to find
a function f from the given class of functions that mini-
mizes a risk functional:

R[f ] =
∫

Q(y − f(x),x)dP (x, y) , (3)

where Q is a loss function indicating how the difference
between measurement value and model’s prediction is
penalized. As P (x, y) is unknown, the empirical risk is
used instead:

Remp =
1
N

N∑

i=1

Q(y − f(x),x). (4)

4.1. Support Vector Regression

The Support Vector Regression model is based on the lin-
ear ε-insensitive loss functions. Following the Structural
Risk Minimization principle of Vapnik, the model com-
plexity has to be penalized simultaneously with keeping
empirical risk (training error) small. The complexity of
linear functions F = {f(x)|f(x) = w · x + b} can be
controlled by the term ‖w‖2 [6]. Introducing the trade-
off constant C, this results in the following optimization
problem:

minimize
1
2
‖w‖2 + C

N∑

i=1

(ξi + ξ∗i ) (5)

subject to





f(xi)− yi − ε ≤ ξi

−f(xi) + yi − ε ≤ ξ∗i
ξi, ξ

∗
i ≥ 0 for i = 1, . . . , N .

Introducing Lagrange multipliers leads to the following
dual formulation of the problem, where dot products
were substituted with a kernel function:

maximize −1
2

N∑

i=1

N∑

j=1

(α∗i − αi)(α∗j − αj)k(xi,xj)

−ε

N∑

i=1

(α∗i + αi) +
N∑

i=1

yi(α∗i − αi) (6)

subject to





N∑

i=1

(α∗i − αi) = 0

0 ≤ α∗i , αi ≤ C for i = 1, . . . , N .

This problem is a Quadratic Programming problem hence
can be numerically solved by a number of methods. The
prediction is a non-linear regression function:

f(x) =
N∑

i=1

(α∗i − αi)k(xi,x) + b (7)

where b can be found easily given the constraints in 6.
Finally, let us summarize the expected properties of the
constructed algorithm and highlight the issues of its prac-
tical use. Generally, the method is non-linear and robust.
The parameters of SVR are:

C - the parameter that defines the trade-off between
training error and model complexity. In dual formula-
tion C defines the upper bound of the multipliers αi and
α∗i (6), hence defines the maximal influence the sample
can have on the solution. This means that the more noisy
the data the less should be the value of C.

ε - the width of the insensitive region of the loss func-
tion. This is the parameter that defines the sparseness of
the SVR solution - the points that lie inside the ε-tube
have zero weights.



4.2. Kernel Ridge Regression

Kernel Ridge Regression is a regularized least square ap-
proach, which leads to the same form of regression func-
tion (7). However, it exploits the square loss function,
and α coefficients can be obtained from the following
closed form expression:

α = (KT K + δI)−1KT Y (8)

where δ is a regularization parameter and Y is the vector
of training outputs. Note that an iterative method can
also be used to train the KRR model.

5. EXPERIMENTS

The experiments described below were carried out on the
following datasets: spiral, Boston housing and sunspots.
The first one is an artificial dataset, which we use to
explore and illustrate the basic properties of the method.
The other two are real-world datasets, commonly used in
machine learning for benchmarking different algorithms.

5.1. Kernel Choice

In this paper, we used the kernel described in Section 3,
using the standard Gaussian RBF kernel with bandwidth
σ as a base kernel. Gaussian RBF is used in all the base-
line supervised algorithms as well. Another parameter
to select is the regularization parameter γ of the modi-
fied kernel (2). This will be explored empirically in this
section.

5.2. Spiral: 2D Synthetic Example

This dataset was artificially generated with:




x1(φ) = 1
2

√
φ cos(φ) + N(0, σx)

x2(φ) = 1
2

√
φ sin(φ) + N(0, σx)

f(φ) = ln(1 + φ) sin( 5
2φ) + N(0, σf )

(9)

in the range of φ ∈ [0; 6π]. The function f(φ) to predict
is defined on the 2D spiral. This function is presented
in Figure 1a with a thin solid line. Both coordinates
and function values are corrupted with normal noise of
variance σ2

x and σ2
f correspondingly. Two random data

realizations are presented in Figures 1b and 1c. We
compare the performance of the proposed method and
the standard Support Vector Regression with Gaussian
RBF kernel. Labeled part of the training set consist of
100 randomly selected samples, while an other set of 900
samples were provided unlabeled to the semi-supervised
method. The results are averaged over 10 runs of the
algorithm (each run selecting different training and test
examples), and its performance was measured in terms
of RMSE using the known underlying function f(φ) (9).

(a) Function f(φ) and its estimates by semi-supervised
(bold line) and standard (dotted line) SVR.

(b) Inputs, σx=0.05 (c) Inputs, σx=0.15

Fig. 1. 2D spiral data.

Figure 2a presents the dependence of the testing error
of both methods with respect to the variance of noise in
the inputs σx. The top curve (with higher RMSE) corre-
sponds to standard SVR. As can be seen, semi-supervised
regression (bottom curve) is preferable for a large region
of noise variance, provided that some geometrical struc-
ture in the data remains.

Figure 2b presents the dependence of the testing error
of both methods with respect to the kernel regularization
parameter γ. The dashed line corresponds to the test-
ing error of the basic SVR. The semi-supervised method
outperforms SVR for a large range of values.

5.3. Boston housing: High Dimensional Regres-
sion Estimation

The task here is to predict the median price of the houses
in certain area of Boston based on 12 continuous and 1
binary variables defining the characteristics of the area.
The training dataset consists of 466 samples, while 40
samples were reserved for testing. The parameters of the
methods were tuned with cross-validation error. Unla-
beled data were randomly chosen by removing the labels
from 50% of data samples. The results were averaged
over 10 runs of the algorithm (each run with different
training and test examples).

Table 1 presents training, testing error and training
time of the following algorithms: the considered SVR
with semi-supervised kernel (SemiSVR), SVR with Gaus-
sian RBF kernel, the standard method of Kernel Ridge



Table 1. Experimental results for Boston Housing
database.

Boston housing results
Algorithm Train err. Test err. Training time, s

SVR 4.0 5.3 0.3
SemiSVR 3.5 5.0 0.5

KRR 2.7 4.0 0.3
SemiKRR 3.5 4.0 0.5

Regression (KRR), and KRR with a semi-supervised ker-
nel (SemiKRR). The results suggest that no significant
improvement was achieved on this dataset. There was
probably not enough data samples to model the mani-
fold in the 13-dimensional input space.

(a) RMSE, X-axis: σx. (b) RMSE, X-axis: γ.

Fig. 2. Spiral data experimental results.

5.4. Sunspots: Time Series Prediction with Miss-
ing Values

This dataset is a time series representing the number of
visible sunspots per day. The following embedding was
used to apply a regression estimator for predictions: to
predict the yearly average of the year starting next day
using the previous 12 yearly averages. The series is thus
smoothed by averaging. Figure 3a presents some 2D pro-
jections (trajectories) in the embedded input space. One
can observe a distinct structure of the inputs, which jus-
tifies the use of manifold-based semi-supervised methods
for making predictions.

We used only one part of the series containing 2000
values. 50% of the labels were deleted from the series to
simulate missing data. Hence, the unlabeled part of the
dataset consisted of 1000 samples, and the training set
also contained 1000 labeled samples. Missing values in
inputs were averaged using two nearest neighbors in time.
The obtained results are summarized in Table 2. The
results are averaged over 10 runs of the algorithm where
different sections of 2000 points were selected randomly.

Predictions are presented in Figure 3b, for γ=0 (stan-
dard SVR), γ=0.1, γ=1. The semi-supervised SVR gives
better forecasting for longer time periods, for higher val-
ues of γ.

Table 2. Experimental results for the Sunspots
database.

Sunspots results
Algorithm Train err. Test err. Training time, s

SVR 10.3 15.8 10.1
SemiSVR 9.4 12.3 30.4

KRR 11.3 17.5 12.6
SemiKRR 12.1 14.0 35.3

(a) Some 2D trajectories (b) SemiSVR Predictions

Fig. 3. Sunspots database results

6. CONCLUSIONS

In this paper we proposed to implement the recently
developed data-dependent semi-supervised kernel for re-
gression estimation methods, namely Support Vector Re-
gression and Kernel Ridge Regression. Thus, the meth-
ods are adapted for semi-supervised learning problems.
Some issues of the practical use of the methods were con-
sidered. We have shown that the semi-supervised meth-
ods do benefit in the case where there exists some geo-
metrical structure in data. A significant improvements
in performance compared to baseline supervised kernel
regression estimators was shown in a number of experi-
ments on synthetic and real-life datasets.
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