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Abstract. Combining multiple information sources, typically from several data
streams is a very promising approach, both in experiments and to some extents in
various real-life applications. A system that usesmore than onebehavioral and
physiological characteristics to verify whether a person is who he/she claims to
be is called amultimodalbiometric authentication system. Due to lack of large
true multimodal biometric datasets, the biometric trait of a user from a database
is often combined with another different biometric trait of yet another user, thus
creating a so-called achimeric user. In the literature, this practice is justified
based on the fact that the underlying biometric traits to be combined are assumed
to be independent of each other given the user. To the best of our knowledge,
there is no literature that approves or disapproves such practice. We study this
topic from two aspects: 1) by clarifying the mentioned independence assumption
and 2) by constructing a pool of chimeric users from a pool oftrue modality
matched users (or simply “true users”) taken from a bimodal database, such that
the performance variability due to chimeric user can be compared with that due
to true users. The experimental results suggest that for a large proportion of the
experiments, such practice is indeed questionable.

1 Introduction

Biometric authentication (BA) is a problem of verifying an identity claim using a person’s be-
havioral and physiological characteristics. BA is becoming an important alternative to traditional
authentication methods such as keys (“something one has”, i.e., by possession) or PIN numbers
(“something one knows”, i.e., by knowledge) because it essentially verifies “who one is”, i.e., by
biometric information. Therefore, it is not susceptible to misplacement or forgetfulness. Exam-
ples of biometric modalities are fingerprints, faces, voice, hand-geometry and retina scans [1].

Due to inherent properties in each biometric and external manufacturing constraints in the
sensing technologies, no single biometric trait can achieve 100% authentication performance.
This problem can be alleviated by combining two or more biometric traits, also known as the
field of multimodal biometric authentication. In the literature, there are several approaches to-
wards studying fusion of modalities. One practice is to construct a large database containing
several biometric traits for each user. This, however, can be very time-consuming and expen-
sive. Another practice is to combine biometric modalities of a database with biometric modalities
of another biometric database. Since both databases do not necessarily contain thesameusers,
such combination results inchimeric users. From the experiment point of view, these biometric
modalities belong to the same person. While this practice is commonly used in the multimodal
literature, e.g., [2, 3] among others, it was questioned whether this was a right thing to do or not



during the 2003 Workshop on Multimodal User Authentication [4]. To the best of our knowledge,
there is no work in the literature that approves or disapproves such assumption.

There are at least two arguments that justify the use of chimeric users, i.e., i)modality inde-
pendence assumption– that two or more biometric traits of a single person are independent of
each other; and ii)privacy issue– participants in the multimodal biometric experiments are not
ready to let institutes keep record of too much of their personal information (raw biometric data)
at the same place. If such information is misused, it could be dangerous, e.g., identity theft. It is
for this same reason that processed biometric features are preferred for storage rather than raw
biometric data. Note that the first argument istechnicalwhile the second one isethical. Although
both arguments are equally important, the second one is beyond an experimenter’s control and
is related to the policy related to a database. For instance the policy should address who can use
the database and how it should be used. When a database is carefully designed to protect the
participants’ privacy right, this issue should be resolved. For this reason, this paper focuses on
the first argument.

We set out to investigate the validity of the modality independence assumption by using two
approaches, namely : 1) by pinning down the concept ofindependenceand 2) by simulating the
effect of chimeric users experimentally and measuring the discrepancy in terms of performance
between the use of chimeric users and the use of true users. Note that these two approaches repre-
senttwo different waysof thinking about the problem: one theoretical and the other experimental.
To verify this hypothesis, we limit our scope to studying such effect to bimodal as generalization
to more than two modalities is direct. It should be emphasized that the use of chimeric users is
not limited to biometric authentication, but may be in general applicable to problems involving
multimodal streams. Hence, this study is of interest to researchers studying multimodal fusion.

This paper is organized as follows: Section 2 underpins the concept of independence between
biometric traits (the first approach of studying the validity of chimeric users); Section 3 describes
the database to be used; Section 4 details the experimental procedure and presents the results (the
second approach); and finally this is followed by conclusions in Section 5.

2 On the Independence Assumption

2.1 Preliminary

Suppose that each authorized person is identified by a unique identity claimj ∈ J ≡ {1, . . . , J}
and there areJ identities. We sometimes call these users as clients to oppose a set of other
unauthorized persons known as impostors. Hence, a biometric authentication system is aimed
at distinguishing clients from impostors, which is anaggregatedtwo-class problem, i.e., a two-
class problem withJ distinctive users. In this problem, it is common to represent a user by
his/her feature template ormodel, i.e, a set of parameters derived from the features. Suppose
that the output due to comparing a user modelCj to a featureX is y(j). For each client or user
modelCj , there is a corresponding impostor modelIj . Lacking a proper definition1, the impostor
model is oftennaivelydefined as the model of other finite users∀j′ |j′ ∈ J − j. We the purpose
of clarity, we will drop the client indexj such that writingC is equivalent to writingCj and
writing y is equivalent to writingy(j). To decide whether to accept or reject the access request
represented by featureX claiming identityj, previous theoretical studies such as [5, 6] often use
the following decision function:

decision(P (C|X)) =

¡
accept ifP (C|X) > 0.5
reject otherwise,

(1)

1 Ideally, this impostor model should be the world population minus the userj. In terms of
computation and data collection effort, this is not feasible and in practice not necessary.



where by the probability law,P (C|X) + P (I|X) = 1. Although this decision rule is correct,
such formulation does not allow the interpretation of a threshold-based decision function such as:

decision(y) =

¡
accept ify > ∆
reject otherwise,

(2)

where∆ is the user-independent decision threshold. It can be easily seen thaty = P (C|X) and
∆ = 0.5 when comparing both decision functions. The decision function in Eqn. (2) is found in
most biometric authentication systems. For instance, if the matching scorey is based on a distance
between a user templateXtmplt and the submitted featureX, i.e.,y ≡ dist(Xtmplt, X), where
dist is a distance measure, the decision function in Eqn. (1) cannot reflect such measure since
it applies to probability outcome only. To allow the interpretation of threshold in the case of a
distance measure, we propose that the classification be carried out such that:

decision(LPR) =

¡
accept if LPR> 0
reject otherwise,

(3)

where LPR islogarithmic posterior ratio. It is defined as:

LPR≡ log

ţ
P (C|X)

P (I|X)

ű
= log

ţ
P (X|C)P (C)

P (y|I)P (I)

ű

= log
P (X|C)

P (X|I)| {z }
+ log

P (C)

P (I)| {z }
≡ LLR −∆, (4)

where we introduced the two terms:y ≡ LLR or Log-Likelihood Ratio and a threshold∆. The
first term corresponds to theinterpretation ofscorey as an LLR. The second term is a constant.
It handles the case of different priors (hence fixeda priori), i.e., it reflects the differentcostsof
false acceptance and false rejection. Note thaty is a direct function ofX and the model variable
associated to it (sayθ), i.e., y = fθ(X). We use the functionf with parameterθ to explicitly
represent thefunctional relationshipbetween the variablesy andX.

Althoughy is interpreted as an LLR here, many different machine-learning algorithms (e.g.,
Gaussian Mixture Models, Multi-Layer Perceptrons, Support Vector Machines) can be viewed as
an approximation to this relationship, without necessarily giving it a probabilistic interpretation,
i.e.,y being a probability. Suppose thaty is an instance of the variableY and is drawn from the
distributionY. The decision function in Eqn. (2) then implies thatEY|C [Y ] > EY|I [Y )], where
EZ [Z] is the expectation ofZ under the lawZ. In words, this means that the expected client
score has to be greater than that of impostor. To allow interpretation of a distance measure, one
can simply interchange betweenC andI, such thatEY|C [Y ] < EY|I [Y ].

Depending on the outcome of the decision (as a function of the threshold∆), a biometric
authentication system can commit two types of errors, namely, False Acceptance (FA) and False
Rejection (FR). The error rates of FA and FR are defined as:

FAR(∆) = 1− P (Y |I ≤ ∆)

FRR(∆) = P (Y |C ≤ ∆),

whereP (Y |k ≤ ∆) is the cumulative density function of conditional variableY within the
range[−∞, ∆] for each classk. Note that a unique point with∆∗ where FAR(∆∗) = FRR(∆∗)
is called Equal Error Rate (EER). EER is often used to characterize a system’s performance.
Another useful performance evaluation point forany given threshold∆ (not necessarily∆∗) is
called Half Total Error Rate (HTER) and is defined as the average of FAR and FRR, i.e.,:

HTER(∆) =
1

2
(FAR(∆) + FRR(∆)).



The discussion until here concerns only a particular client. In reality, one has extremely few
examples of genuine accessesy|C and relatively large impostor accessesy|I, as mentioned ear-
lier. As a result, the estimation of user-specific threshold is extremely unreliable. For this reason,
the user-independent versions of FAR, FRR and EER, as well as the threshold are often used.
Although there exists abundant literature to estimate user-specific threshold (see for instance a
survey in [7, 8]), common threshold is by far a standard practice.

2.2 Different levels of Dependency Assumption

There are a number of different assumptions that can be made about the levels of dependency
when one considers combining multimodal information sources. These dependencies have impli-
cations for the mathematical modeling and classifier used. Two notions of dependencies can be
distinguished here, i.e,feature-orienteddependency andscore-orienteddependency. The former
assumes dependency at the feature-level whilenot consideringthe dependency at the score level.
The latter, on the other hand, assumesindependence at the feature levelbut handles dependency
uniquely at the score level. These two dichotomies thus give rise to four types of dependencies in
decreasing order:

– Strict Feature Dependence.It is characterized uniquely by the feature-oriented dependence
assumption.

– Loose Feature DependenceIt is characterized by feature-oriented independence but score-
oriented dependence

– Loose Feature IndependenceIt is characterized by both feature-oriented and score-oriented
independence.

– Strict Feature Independence.It is characterized uniquely by the feature-oriented indepen-
dence assumption.

Suppose thatX1 andX2 are features of two different biometric modalities. Using the same
Bayesian formulation (with focus on LLR) as in the previous Section, the four categories can be
formally stated as follows:

– Strict Feature Dependence:

ySD(j) = log
p(X1, X2|Cj)

p(X1, X2|Ij)
(5)

≡ fθj (X1, X2), (6)

where the functionf explicitly represents any classifier with the associated parameterθj .
By so doing, we actually provide a Bayesian interpretation of the classifierf . One possible
weakness of this approach is known as the “curse of dimensionality”, whereby modeling the
joint features in higher dimension can cause a degraded performance compared to methods
resulting from the other assumptions (to be discussed below).

– Strict Feature Independence:

ySI(j) = log
p(X1|Cj)p(X2|Cj)

p(X1|Ij)p(X2|Ij)
(7)

= log
p(X1|Cj)

p(X1|Ij)
+ log

p(X2|Cj)

p(X2|Ij)
(8)

= y1(j) + y2(j) (9)

≡ fθ1
j
(X1) + fθ2

j
(X2) (10)



whereyi(j) ≡ log
p(Xi|Cj)

p(Xi|Ij)
andθi

j is the model parameter associated to modalityi and

userj. Note that in theory the two classifiers involved,fθi
j
|i = {1, 2}, do not have to

be homogeneous (the same type). In practice, however, some form of normalization may
be needed if they are not homogeneous, e.g., from different vendors or based on different
algorithms. It can be seen that using this Bayesian framework, the independence assumption
leads to the well-known sum rule. On the other hand, using the probabilistic framework
y(j) ≡ p(Cj |X), this dependency would have led to the well-known product rule (proof
not shown here).

– Loose Feature Dependence:

yLD(j) = log
p(y1(j), y2(j)|Cj)

p(y1(j), y2(j)|Ij)
(11)

≡ fθCOM
j

(y1(j), y2(j)) (12)

= fθCOM
j

ş
fθ1

j
(X1), fθ2

j
(X2)

ť
, (13)

wherefθCOM
j

can be considered as a second-level classifier, also called a fusion classifier.

The loose feature dependence is a result of committing to the feature independence assump-
tion – which means that the scoresy1(j) andy2(j) can be derived separately – and score-
oriented dependence assumption – implying that the dependency at the score level should
be modeled. This formulation actually motivates the use of trainable classifiers in fusion.
Suppose thaty(j) = [y1(j), y2(j)]

T is a vector and an instance of the variableY (j). If
Y (j) is drawn from a class-conditional Gaussian distributions and that both the client and
impostor distributions share a common covariance matrixΣ, it is possible to show that:

fθCOM
j

= w1(j)y1(j) + w2(j)y2(j), (14)

wherew(j) = [w1(j), w2(j)]
T has the following solution:

w(j) ∝ Σ−1 (E[Y (j)|Cj ]− E[Y (j)|Ij ]) . (15)

The linear opinion pool (or weighted sum) shown here is a typical solution given by Fisher’s
linear discriminant [9, Sec. 3.6]. Other solutions using the same linear discriminant func-
tion (but possiblymore powerfulsince they do not make the class-conditional Gaussian
assumption) includes Support Vector Machines with a linear kernel [10] and the perceptron
algorithm [9, Chap. 6], the latter of which generalizes to the least square and the logistic dis-
crimination/regression solutions (depending on the error criterion). It can thus be seen that
the loose feature dependence assumption motivates the use of a fusion classifier. It should
be noted that the Bayesian framework using Eqn. (11) as a departure point does not dictate
that a linear classifier has to be used. In practice, however, to the best of our knowledge,
non-linear classifiers have not been reported to providesignificantlybetter results over their
linear counterparts in this application. Often, due to small training sample size on aper user
basis, the classifier at this level is trained across all users. Although user-specific fusion clas-
sifiers have been proposed, e.g., [3], global fusion classifier is by far the most commonly
used approach. We will study this case here. Hence, as long as fusion is concerned, the index
j in the termfθCOM

j
of Eqn. (12) can be dropped, so as the weights in Eqn. (14).



– Loose Feature Independence:

yLI(j) = log
p(y1(j)|Cj)p(y2(j)|Cj)

p(y1(j)|Ij)p(y2(j)|Ij)
(16)

= log
p(y1(j)|Cj)

p(y1(j)|Ij)
+ log

p(y2(j)|Cj)

p(y2(j)|Ij)
(17)

≡ fθ1
j
(y1(j)) + fθ2

j
(y2(j)) (18)

= fθ1
j

ş
f ′θ1

j
(X1)

ť
+ fθ2

j

ş
f ′θ2

j
(X2)

ť
, (19)

wheref ′
θi

j
is a classifier taking featuresXi andfθi

j
is another classifier taking the score

yi(j), for all i ∈ {1, 2}. Sincefθi
j

is a one-input one-output function, this procedure is also

calledscore normalization[11]. Among the score normalization techniques, user-specific
Z-score normalization is perhaps the most representative one. Z-norm and other techniques
are surveyed in [7]. It turns out that the fusion classifier is a sum rule. Again, due to lack of
user-specific data, the score normalization is treated the same across users. Hence, we can
replacefθi

j
by fθi (without the subscriptj) in Eqns. (18) and (19), for alli = {1, 2}.

The above four types of architecture as a result of different levels of dependence assumption are
certainly not exhaustive. It is possible to combine say strict feature dependence and strict feature
independence assumption such that the resultant architecture compensates for both assumption
(see for instance [12]).

As can be seen, depending on the level of dependency betweenX1 andX2 that one is willing
to commit to, one arrives at any of the four choices of architectures. In multimodal biometrics,
where two (or more) biometric modalities are captured using different sensors, it is well accepted
that the strict feature dependence assumption (the first one) isin generalnot true [2]. Hence,
as long as the use of chimeric users is concerned, only the last three levels of dependency are
relevant. In the experimental setting with chimeric users, one simply uses the concatenated score
with modalities ofother users, i.e.,

ychimeric = [y1(j), y2(j
′)]T wherej 6= j′.

and combines the concatenated score by using classifiers such as Eqns. (9), (12) and (18), respec-
tively for the last three levels of dependency.

Thus we arrive at the crucial question: “Do the different levels of dependency allow one to
switch the identities?”. If one follows strictly (and agrees with) the Bayesian framework pre-
sented so far, none of these assumptions provide any hint about the use of chimeric users in
practice. They merely guide how one should model the final scorey just before making the ac-
cept/reject decision. Lacking any plausible justification and theoretical explanation, we resolve
to an experiment-driven approach to study the effects of switching identities. Before presenting
the experimental approach, we first present the database used in the next section.

3 The XM2VTS Database

There exists several bimodal biometric authentication databases for this purpose, e.g., M2VTS,
XM2VTS and BANCA databases. We will use the XM2VTS for two reasons: it has among the
largest number of users, i.e., 200 clients and 95 casual impostors; and the results of many single
modal experiments (in scores) are available for fusion. These scores are also publicly available2

and are reported in [13].

2 http://www.idiap.ch/∼norman/fusion



Table 1.The Lausanne Protocols as well as the fusion protocol of XM2VTS database.

Data sets Lausanne Protocols Fusion
LP1 LP2 Protocols

LP Train client accesses 3 4 NIL
LP Eval client accesses 600 (3× 200) 400 (2× 200) Fusion dev
LP Eval impostor accesses 40,000 (25× 8× 200) Fusion dev
LP Test client accesses 400 (2× 200) Fusion eva
LP Test impostor accesses112,000† (70× 8× 200) Fusion eva

†: Due to one corrupted speech file of one of the 70 impostors in this set, this file was deleted,
resulting in 200 less of impostor scores, or a total of 111,800 impostor scores.

The XM2VTS database [14] contains synchronised video and speech data from 295 subjects,
recorded during four sessions taken at one month intervals. On each session, two recordings were
made, each consisting of a speech shot and a head shot. The speech shot consisted of frontal face
and speech recordings of each subject during the recital of a sentence. The database is divided
into three sets: a training set, an evaluation set and a test set. The training set (LP Train) was
used to build client models, while the evaluation set (LP Eval) was used to compute the decision
thresholds (as well as other hyper-parameters) used by classifiers. Finally, the test set (LP Test)
was used to estimate the performance.

The 295 subjects were divided into a set of 200 clients, 25 evaluation impostors and 70 test
impostors. There exists two configurations or two different partitioning approaches of the training
and evaluation sets. They are called Lausanne Protocol I and II, denoted asLP1 andLP2 in this
paper. In both configurations, the test set remains the same. Their difference is that there are
three training shots per client for LP1 and four training shots per client for LP2. Table 1 is the
summary of the data. More details can be found in [15]. The first column shows the data set,
divided into training, evaluation and test sets. Columns two and three show the the partition of
the data according to LP1 and LP2 whereas column four shows the partition of data for the fusion
protocols that areconsistentwith the Lausanne Protocols. As far as fusion is concerned, there are
only two data sets, labeled as “Fusion dev” (for development) and “Fusion eva” (for evaluation),
since the data used in LP training sets are reserved to construct the base systems3. Note that
the fusion development set is used to calculate the parameters of fusion classifier as well as the
optimal global threshold. They are then applied to the fusion evaluation set. Since the threshold is
calculated from the development set, the reported HTER obtained from the evaluation set is thus
called ana priori HTER.

4 An Experimentally Driven Approach

This Section aims at answering the following question: “Is an experiment carried out using
chimeric usersequivalentto the one carried out using true users in terms of a given performance
measure?”. Suppose that the performance measure of interest isa priori HTER. The above ques-
tion can then be rephrased as: “Is thea priori HTER obtained using chimeric userssimilar to (or
not significantlydifferent from) the one obtained using the true users?”. We can formally specify
the null hypothesis and its corresponding alternative hypothesis as follows:

3 Given the naming conventions of the XM2VTS corpus which are admitably rather confusing,
we consistentlyuse the term “developemnt set” to mean training set and “evaluation set” to
mean test set.



– H0: Thea priori HTER obtained from chimeric users isequivalentto the one obtained from
true users.

– H1: Thea priori HTER obtained from chimeric users isdifferent fromthe one obtained from
true users.

Suppose that the HTER value due to chimeric users,v, is an instance of a random variableV
which follows an unknown distribution. We are interested in:

p(v ∈ c[a, b]|H0) = α, (20)

wherec[a, b] is the complementary of[a, b] – or thecritical region, i.e., the set of values for
which we will rejectH0 – andα is the level of the test – or the Type I error, i.e., the probability of
selectingH1 whenH0 is true. By convention,α is usually set to 1% or 5%. Note that the critical
region is computed such that the Type I error is only meaningful for a givenα level.

Since the distribution of HTER due to chimeric users is unknown, we need to estimate it us-
ing a random permutation procedure such that in each permutation, a biometric modality of one
user is paired with another biometric modality of yet another user. This procedure is somewhat
similar to the bootstrap-based non-parametric statistical test [16, 17] but different in two aspects:
a bootstrap manipulates samples whereas the permutation process here manipulates user iden-
tities; and a bootstrap draws samples with replacement whereas the permutation process, as its
name implies, permutes identities, which means it draws identitywithout replacement. Since each
permutation creates a “new” set of fusion scores, a fusion classifier has to be constructed before
the HTER value can be computed. By repeatedly applying the random permutation procedure, we
can then obtain a set of HTER values, which represents our non-parametric estimate of the distri-
butionV. Evaluating Eqn. (20) is simply a matter of determining if the HTER due to true users is
in [a, b] (hence in favor ofH0) or in its complementc[a, b] (hence in favor ofH1). The valuesa
andb are chosen such thatp(v ∈ [a, b]) = 1−α for a givenα andp(v < a) = p(v > b). Under
such constraints, it is obvious to see thatp(v < a) = p(v > b) = α/2. To illustrate this idea, we
took an experiment from the XM2VTS score-level fusion benchmark database, and applied the
hypothesis test procedure mentioned. The results are plotted in Figure 1.

Two fusion classifiers are used in the experiments, namely the mean operator and the Gaus-
sian Mixture Model (GMM). Both of these fusion classifiers are representative approaches of
the loose feature independenceassumption and theloose feature dependenceassumption, re-
spectively. For the mean operator, prior to fusion, scores are normalized to zero mean and unit
variance such that none of the two expert scores dominate just because of a larger variance. The
normalization parameters are calculated from the development set. For the GMM, the number of
Gaussian components is tuned by simple validation.

According to the fusion protocol, there are 21 multimodal data sets available. The HTER
distribution due to random identity match is sampled 1000 times and there are 200 users. This
means that the 1000 samples are a sheer portion of1000/200! ≈ 10−372, i.e., one cannot possibly
evaluate all the possible permutations. Table 2 lists the HTER range at 95% of confidence due to
1000 samples of random identity match (chimeric-user effect) and the corresponding HTER of
true identity match. The first 15 are fusion datasets taken from LP1 while the rest are from LP2.
For the values of HTER of true identity match falling outside the confidence range, a∗ sign is
marked. There are two∗’s for the mean operator and three for the GMM.

Since Table 2 is limited to the criterion of EER only, we also plot the whole spectrum of
the so-called Expected Performance Curve (EPC) [18], which selects different thresholds for
different criteria, on a separate validation set, as follows:

∆∗ = arg min
∆

ωFAR(∆) + (1− ω)FRR(∆) (21)



0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

120

140

160

HTER(%)

Fr
eq

ue
nc

y

density, chimeric
HTER, true users
2.5% bound
97.5% bound

Fig. 1.The distribution ofa priori HTER (thin curve) estimated from 1000 random samplings of
chimeric users versus the HTER of true users (bold vertical line). All thresholds were calculated
to minimize HTER on the development set. The HTER of the true users is in the 87.7 percentile
(or 1.42% HTER) and is within the 2.5 (dashed vertical line) percentile (or 0.69% HTER) and
97.5 percentile (dotted vertical line) (or 1.62% HTER). Hence, this experiment supports the null
hypothesis.

whereω ranges from 0 to 1. Using this threshold, the EPC then plots the corresponding HTER on
the test set, with respect toω, i.e., HTER(∆∗, ω). This enables us to obtain unbiased estimates
of the HTER since all hyper-parameters, including the threshold, are selected on some separate
validation set.

Figures 2 and 3 show EPC curves of the distribution due to random identity match (with a
95% confidence interval) and the EPC curve of true identity match, for the mean operator and
the GMM, respectively. As can be observed, there are much more points where the HTER of true
identity match falls out of the 95% confidence range. Precisely, exactly8/21 of experiments for
the mean operator and7/21 of experiments for the GMM. Hence, based on the available fusion
datasets, about one third of them shows that the experiments with chimeric users areinconsistent
with those carried out with the true identity match setting. Considering the fact that the mean
operator has no parameters to be estimated and that the GMM has some, the free parameters in the
fusion classifierdoes, to some extents, contribute to the variability observed by HTER due to the
chimeric-user effect. Note that in both experiments, the 1000 random identity permutations were
constrained to be thesame. This is essential to keep the possible experiment-induced variation to
be minimal.

5 Conclusions

In this paper, the following issue was addressed: “Can chimeric persons be used in multimodal
biometric authentication experiments?”. This topic was tackled by 1) identifying the different lev-
els of dependency assumptions as a result of two dichotomies: feature-oriented dependence and
score-oriented dependence; and 2) by experimentally comparing the effects due to using chimeric
users with those using the original true modalities of same users (or simply “true users”). One
major conclusion from the first approach is that the independence assumption does not imply that
one can use the chimeric users in experiments. Instead, such assumption only guides how one
should construct a classifier to combine information from different modalities. Neither does the



Table 2. Thea priori HTER range (whose confidence falls between 2.5% and 97.5% quantiles,
corresponding to the usual middle 95% confidence bound) of 1000 samples of random identity
match (chimeric-user effect) versus thea priori HTER of true identity match for both the mean
operator and the GMM fusion classifiers, for each of the 21 fusion datasets. For each experiment,
the threshold is calculated to fulfill the EER criterion on the training set. For the values ofa priori
HTER of true identity match falling outside the confidence range, a “∗” sign is marked.

HTER (%)
No. LP Data set Mean GMM

(Face) (Speech) experts chimeric true chimeric true
1 1 (FH,MLP)(LFCC,GMM) [0.36, 1.02] 0.79[0.10, 0.60] 0.35
2 1 (FH,MLP)(PAC,GMM) [0.70, 1.36] 1.13[0.38, 1.13] 1.08
3 1 (FH,MLP)(SSC,GMM) [0.54, 1.24] 0.87[0.32, 1.03] 0.72
4 1 (DCTs,GMM)(LFCC,GMM) [0.16, 0.68] 0.53[0.11, 0.58] 0.44
5 1 (DCTs,GMM)(PAC,GMM) [0.71, 1.59] 1.44[0.69, 1.62] 1.42
6 1 (DCTs,GMM)(SSC,GMM) [0.60, 1.38] 1.14[0.55, 1.39] 1.21
7 1 (DCTb,GMM)(LFCC,GMM) [0.13, 0.47]∗ 0.55[0.04, 0.51] 0.47
8 1 (DCTb,GMM)(PAC,GMM) [0.30, 0.93]∗ 1.13[0.29, 0.97]∗ 1.06
9 1 (DCTb,GMM)(SSC,GMM) [0.27, 0.82] 0.75[0.22, 0.82]∗ 0.86

10 1 (DCTs,MLP)(LFCC,GMM) [0.52, 1.16] 0.84[0.09, 0.58] 0.50
11 1 (DCTs,MLP)(PAC,GMM) [0.95, 1.77] 1.12[0.54, 1.40] 0.86
12 1 (DCTs,MLP)(SSC,GMM) [0.84, 1.64] 1.37[0.45, 1.19] 1.02
13 1 (DCTb,MLP)(LFCC,GMM) [1.31, 2.62] 1.62[0.23, 1.08] 0.58
14 1 (DCTb,MLP)(PAC,GMM) [2.42, 3.84] 3.65[1.41, 2.91] 2.60
15 1 (DCTb,MLP)(SSC,GMM) [2.07, 3.43] 2.88[1.00, 2.22] 1.55
16 2 (FH,MLP)(LFCC,GMM) [0.34, 0.91] 0.69[0.01, 0.64] 0.13
17 2 (FH,MLP)(PAC,GMM) [0.53, 1.21] 1.14[0.27, 0.98] 0.73
18 2 (FH,MLP)(SSC,GMM) [0.50, 1.10] 0.98[0.17, 0.83]∗ 0.89
19 2 (DCTb,GMM)(LFCC,GMM) [0.00, 0.33] 0.13[0.00, 0.38] 0.38
20 2 (DCTb,GMM)(PAC,GMM) [0.04, 0.46] 0.18[0.03, 0.51] 0.16
21 2 (DCTb,GMM)(SSC,GMM) [0.01, 0.38] 0.18[0.01, 0.51] 0.17

second more empirical approach support the use of chimeric users. Indeed based on 21 fusion
datasets and two fusion classifiers, only about two thirds of the data indicate that chimeric users
can be used, or in other words, the use of true users does not vary significantly, at 95% of confi-
dence, compared to the case when chimeric users are used in experiments. The rest of the rather
large one-third of datasets suggest that the use of chimeric users cannot appropriately replace the
dataset of the true modality matched dataset. Considering the high variability of HTER due to
the effect of chimeric users, several runs of fusion experiments with different identity match are
strongly recommended. Although such remedial procedure does not necessarily reflect the case
when true modality matched identity is used, itat leastgives a more accurate figure about the
possible range of HTER values when the true identities are used. If the 21 fusion datasets are
representative of this scenario, then, one might have a2/3 chance of better reflecting the real
HTER, after performing a large number of fusion experiments (1000 in our case!). However, one
shouldprobably notuse the obtained HTER as a claim that the performance reflects the actual
case where the real multimodal datasets are used. The current experimental approach adopted
here is somewhat preliminary and in some ways limited in scope. It does not answer for instance,
“how far the score distribution estimated with the independence assumption is from the one esti-
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Fig. 2. The EPC curve range, whose X-axis is the costω and whose Y-axis is HTER in %, due
to 1000 samples of random identity match, at 95% of confidence versus the EPC curve (dashed
line) of true identity match, for each of the 21 experiments, using themean operatoras the fusion
classifier. They are labeled accordingly from 1 to 21 corresponding to the experiment numbers in
Table 2. A∗ sign is marked for the experiments whose one or more HTERs of true identity match
fall outside the confidence range. For these points, circles are plotted on the corresponding EPC
curve.

mated with the dependence assumption?”. Secondly, it does not yet answer the question: “Are the
relative HTER values, in contrast to absolute values as done here (e.g., in comparing two fusion
methods)consistentbetween experiments with chimeric users and those with true users?” These
issues will be dealt with in the near future.
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Fig. 3.As per Figure 2, except that a Gaussian Mixture Model fusion classifier is used in place of
the mean operator. There are 7 data sets reporting that the EER due to true identity match issig-
nificantlydifferent from the EER distribution due to random identity match at 95% of confidence,
contrary to 8 in Figure 2.
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17. M. Keller, J. Maríethoz, and S. Bengio, “Significance Tests forbizarreMeasures in 2-Class
Classification Tasks,” IDIAP-RR 34, IDIAP, 2004.
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