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Abstract. The issues of fusion with client-dependent and confidence information
have been well studied separately in biometric authentication. In this study, we pro-
pose to take advantage of both sources of information in a discriminative frame-
work. Initially, each source of information is processed on a per expert basis (plus
on a per client basis for the first information and on a per example basis for the sec-
ond information). Then, both sources of information are combined using a second-
level classifier, across different experts. Although the formulation of such two-step
solution is not new, the novelty lies in the way the sources of prior knowledge are
incorporated prior to fusion using the second-level classifier. Because these two
sources of information are of very different nature, one often needs to devise spe-
cial algorithms to combine both information sources. Our framework that we call
“Prior Knowledge Incorporation” has the advantage of using the standard machine
learning algorithms. Based on10×32 = 320 intramodal and multimodal fusion ex-
periments carried out on the publicly available XM2VTS score-level fusion bench-
mark database, it is found that the generalisation performance of combining both
information sources improves over using either or none of them, thus achieving a
new state-of-the-art performance on this database.

1 Introduction

Previous studies have shown that combining several biometric authentication systems is
a potential way to improve the overall system accuracy [1]. It has also been shown that
fusion with client-dependent and confidence information canfurther improve the sys-
tem performance. Studies usingclient-dependent informationinclude client-dependent
threshold [2], model-dependent score normalisation [3] or different weighing of expert
opinions using linear [4] or non-linear combination [5] on a per client model basis. Some
of the existing approaches to incorporate theconfidence or quality informationare a mul-
tivariate polynomial regression function [6], a statistical model (that reconciles expert
opinions) [7] and a modified Support Vector Machine algorithm [8]. Specific to speaker
authentication, in [9], the first formant of speech was used as an indicator of quality to
weigh the Log-Likelihood Ratio (LLR) of each speech frame. Thus, instead of taking the
average LLR as commonly done, a weighted average LLR was used. These studies have
shown that incorporation of client-dependent and confidence information are important
means to improve multimodal biometric systems.

In this study, we would like to verify whether fusion using both of these sources of
information is more beneficial than using either one or none at all. To the best of our



knowledge, this issue has not been examined before. This is perhaps because these two
sources of information are very different, and strategies employed to integrate one source
of information is completely different from or incompatible with the other. We propose
a novel way to fuse these two sources of information in two steps: first incorporate the
prior knowledge on a per expert basis and then combine them using a second classifier.
The idea of using a second classifier is not new. This strategy is called post-classification
in [10]. However, deriving ways to incorporate the prior knowledge into the scores, on
a per expert basis, prior to fusion is new. This framework is called “Prior Knowledge
Incorporation” (PKI). It should be noted that the prior knowledge incorporated scores, on
their own, may not necessarily be very useful if not further combined with other scores.
The advantage of this technique is that, due to PKI scores, (the first step), information
sources can be combined independently. In terms of implementation, this means modular
integration is possible. Secondly, the second-level classifier can be implemented using
standard off-the-shelf machine-learning algorithms, thus eliminating the need to create a
specific fusion algorithm for this purpose. In principle, any sources of prior knowledge
can be combined this way. In practice, the amount of prior knowledge possibly employed
is limited by the information given by the baseline expert systems.

In order to verify this hypothesis, three sets of fusion control experiments were carried
out, i.e., fusion using the original expert scores, fusion using client-dependent normalised
scores and fusion using confidence. These baseline experiments are then compared to
fusion using all the available information sources. Based on 32 fusion data sets taken from
the publicly available XM2VTS score fusion benchmark database [11], it is concluded
that fusion with both sources of information is more beneficial than using either one or
none of them.

This paper is organised as follows: Sections 2 and 3 discuss briefly how the client-
dependent information and confidence information can be computed, on a per expert ba-
sis. Section 4 discusses how these seemingly different sources of information can be fused
together using the PKI framework. The database and results are presented in Sections 5
and 6, respectively. They are followed by conclusions in Section 7.

2 Deriving Client-Dependent Information

There exists a vast literature in this direction. A survey can be found in [12, Sec. 2]. There
are two families of approaches, namely, score normalisation and threshold normalisation.
The former aims at normalising the score such that a global decision threshold can be
found easily. The latter manipulates the decision threshold directly. It has been shown
that [12] both families are dual forms of each other. The disadvantage of the latter category
is that it is dependent on a specific cost of false acceptance and false rejection while the
former does not have to be. Hence, client-dependent score normalisation methods are
considered here.

Examples of existing methods are Z-, D- (for Distance), T- (for Test) and more re-
cently, F-Norms (for F-ratio). In the terms used in [3, 13], Z-Norm [13] is impostor-centric
(i.e, normalisation is carried out with respect to the impostor distributions calculated “of-
fline” by using additional data), T-Norm [13] is also impostor-centric (but with respect
to a given utterance calculated “online” by using additional cohort impostor models). D-



Norm [14] is neither client- nor impostor-centric; it is specific to the Gaussian Mixture
Model (GMM) architecture and is based on Kullback-Leibler distance between two GMM
models. In [2], a client-centric version of Z-Norm was proposed. However, this technique
requires as many as five client accesses. Due to user-friendliness aspect, one often does
not have many client-specific biometric samples. To overcome this problem, F-Norm was
proposed [12]. It is client-impostor centric. Based on the experiments reported, as few as
two client scores are needed to perform this normalisation. It was shown that F-Norm is
superior over Z-Norm because F-Norm uses the client-specific impostor information in
addition to the client-specific information.

In this study, as an extension of [12], F-Norm is used. Suppose that the score of a
system isy. It indicates how likely that a given biometric sample belongs to a client. Let
µk(j) be the mean score of client with the unique identityj given that the true class-
labelk = {C, I} (either a client or an impostor) is known (from a development set). Let
the (class-dependent but) client-independent mean beµk, for k = {C, I}. The resultant
F-ratio transformed normalisation is:

yF = A(j)(y −B(j)), (1)

where,

A(j) =
2a

β(µC(j)− µI(j)) + (1− β)(µC − µI)
, (2)

and
B(j) = γµI(j) + (1− γ)µI (3)

The termsA(j) andB(j) are associated to clientj (client-dependent) and are derived
from F-ratio. They are each controlled by the parametersβ ∈ [0, 1] andγ ∈ [0, 1] on a
per fusion experiment basis. The term2a determines the “desired” distance between the
client-specific mean and the client-specific impostor mean.a is a constant and is fixed
to 1. β andγ adjust between the client-dependent and client-independent information.
Whenβ = 0 andγ = 0, it can be shown mathematically that F-ratio normalisation is
equivalent to no normalisation at all. In biometric authentication, one often has abundant
client-specific (simulated) impostor information. Preliminary experiments in [12] show
that γ = 1 is always optimal. The experimental results confirm that due to abundant
client-specific impostor information, the shift inB(j) can always be estimated reliably.
As a consequence, the only parameter needs to be optimised, on a per experiment and per
expert basis, is theβ parameter. It can be optimised using different approaches, among
which the direct approach is to use the line search procedure [15, Sec. 7.2].

3 Deriving Confidence Information

It has been shown in [16] that confidence can be derived from a “margin”. The margin can
be defined from False Acceptance (FA) Rate (FAR) and False Rejection (FR) Rate (FRR)
with respect to a threshold∆. FAR and FRR are defined as follows:

FAR(∆) =
number of FAs(∆)

number of impostor accesses
, (4)



FRR(∆) =
number of FRs(∆)

number of client accesses
. (5)

Replacing∆ by the associated expert scorey, the margin of the scorey is defined as:

q = |FAR(y)− FRR(y)| (6)

Hence, when incorporated into an existing discriminant function,q modifies the discrim-
inant functiondynamically, i.e., a per example basis. Suppose thatyi is the score of
experti = 1, . . . , N . Linear combination of{yi, qiyi} from different expert systems,
with weightw1,i associated toyi andw2,i associated toqiyi, is equivalent to computing
yi × (w1,i + qiw2,i), for all i [16]. Note that from the term(w1,i + qiw2,i), it is obvious
thatqi has a direct influence on the gradient of the resultant discriminative function on a
per example basis. Hence,{yi, qiyi}, can be seen as a form of Prior Knowledge Incorpo-
ration (PKI). Using equal weight in linear combination, in [16], it was shown that fusion
with {qiyi|∀i} has a better generalisation performance than fusion without the margin
information (the classical way), i.e.,{yi|∀i}. Furthermore, fusion with{yi, qiyi|∀i} con-
sistentlyoutperforms{qiyi|∀i}, even though the generalisation performance is not always
significant based on the HTER significance test [17].

4 Combing Both Sources of Information: A Prior Knowledge
Incorporation (PKI) Framework

In the previous sections, the client-dependent and confidence information are employed
on a per expert basis, independently of the other expert scores. The concept of PKI was
introduced when discussing how confidence (based on margin) can be combined. In this
section, we extend this concept to incorporate the client-dependent information as well,
i.e., using{yi, qiyi, y

F
i |∀i}. In principle, we could combine any other sources of infor-

mation or prior knowledge this way. The only limit is the amount of prior knowledge
captured by the available data (scores in this case).

Suppose that a linear combination is used to fuse{yi, qiyi, y
F
i |∀i}. Let w1,i, w2,i and

w3,i be weights associated toyi, qiyi andyF
i , respectively, for alli. Let the bias term be

−∆, where∆ is the final decision threshold. Note that in this study, a separate training
procedure of the∆ parameter is employed to minimise Weighted Error Rate (WER)on
the development set. WER is defined as:

WERα(∆) = αFAR(∆) + (1− α)FRR(∆), (7)

whereα ∈ [0, 1] balances between FAR and FRR. This procedure requires the compu-
tation of fused scores on both the development and evaluation sets. In this way, during
testing , based on a specified WER, the obtained threshold from the development set can
be applied to the evaluation set. A separate threshold estimation procedure is necessary
because algorithms that optimise the parameters of the fusion classifiers (weights in the
linear combination case)do notnecessarily optimise WER. For instance, SVM maximises
the margin; Fisher discriminant maximises the Fisher-ratio criterion, etc.



The fused score can be written as:

yCOM =
∑

i

[
yiw1,i + qiyiw2,i + yF

i w3,i

]−∆

=
∑

i

[yiw1,i + qiyiw2,i + B(j)(yi −A(j))w3,i]−∆

=
∑

i

[
yi

(
w1,i︸︷︷︸+ qiw2,i︸ ︷︷ ︸+ B(j)w3,i︸ ︷︷ ︸

)]
−

∑

i

[
B(j)A(j)w3,i︸ ︷︷ ︸

]
− ∆︸︷︷︸, (8)

where Eqn. (1) was used to replace the termyF
i . The first underbraced term is theglobal

weighton aper expert basis; the second is the weight contribution due to the confidence
information on aper example basis; and the third is the weight contribution due to the
client-dependent information source on aper client basis. These three weights arelin-
early combined to weight the scoreyi. Then the fourth underbraced term introduces the
client-dependent shift on aper expert and per client basis. Finally, the last underbraced
term introduces theglobal shiftto the final discriminative function. This term (∆) is opti-
mised by minimising WER for a givenα value. From fusion point of view, the first three
underbraced terms introduce tilt and while the last two underbraced term introduces shift
to the decision hyperplane.

Although the PKI scores are simple to obtain, their linear combination can be a very
complex function as shown here. It should be noted that even though non-linear combi-
nation can also be used (using the SVM algorithm with non-linear kernels , polynomial
expansion of the terms{yi, qiyi, y

F
i |∀i}, etc), simple linear solution is preferred to avoid

overfitting. Furthermore, most of the non-linear part of the problem should have been
solved by the base experts, thus eliminating the need for a complex second-level classi-
fier.

5 Database and Evaluation

The publicly available1 XM2VTS benchmark database for score-level fusion [11] is used.
There are altogether 32 fusion data sets and each data set contains a fusion task of two
experts. These fusion tasks contain multimodal and intramodal fusion based on face and
speaker authentication tasks. For each data set, there are two sets of scores, from thedevel-
opmentand theevaluationsets. The development set is useduniquelyto train the fusion
classifier parameters, including the threshold (bias) parameter, whereas the evaluation set
is used uniquely to evaluate the generalisation performance. They are in accordance to
the two originally defined Lausanne Protocols [18]. The 32 fusion experiments have 400
(client accesses)× 32 (data sets)= 12,800 client accesses and 111,800 (impostor accesses)
× 32 (data sets) = 3,577,600 impostor accesses.

The most commonly used performance visualising tool in the literature is the Deci-
sion Error Trade-off (DET) curve [19]. It has been pointed out [20] that two DET curves
resulting from two systems are not comparable because such comparison does not take
into account how the thresholds are selected. It was argued [20] that such threshold should

1 Accessible at http://www.idiap.ch/∼norman/fusion



be chosena priori as well, based on a given criterion. This is because when a biometric
system is operational, the threshold parameter has to be fixeda priori. As a result, the
Expected Performance Curve (EPC) [20] was proposed. This curve is constructed as fol-
lows: for various values ofα in Eqn. (7) between 0 and 1, select the optimal threshold
∆ on a development (training) set, apply it on the evaluation (test) set and compute the
HTER on the evaluation set. This HTER is then plotted with respect toα. The EPC curve
can be interpreted similarly to the DET curve, i.e., the lower the curve, the better the gen-
eralisation performance. In this study, thepooledversion of EPC is used to visualise the
performance. The idea is to plot a single EPC curve instead of 32 EPC curves for each
of the 32 fusion experiments. This is done by calculating theglobal false acceptance and
false rejection errors over the 32 experiments foreachof theα values. The pooled EPC
curve and its implementation can be found in [11].

6 Experimental Results

The client-dependentsetting is used to derive F-Norm transformed scores. On the other
hand, the client-independentsetting is used to derive the margin scores. Three sets of
control experiments are performed, namely with original scores{yi|∀i}, F-Norm trans-
formed scores{yF

i |∀i} and margin-derived confidence scores{yiqi|∀i}. For each set of
experiments, three types of fusion classifiers are used, namely, a Gaussian Mixture Model
(GMM), a Support Vector Machine (SVM) with a linear kernel and the mean operator.
Both GMM and SVM employed are using standard algorithms, without any particular
modification. The hyper-parameters are selected automatically via cross-validation. Fig-
ures 1(a)–(c) show the generalisation performance of these three sets of control exper-
iments. Each curve is a pooled EPC curve over 32 fusion multimodal and intramodal
datasets. Figure 2 complements Figure 1 by showing the corresponding ROC curves.

To compare these three control experiments with the ones fusing all sources of infor-
mation, i.e.,{yi, yiqi, y

F
i |∀i}, we plotted the best of each pooled EPC curves in (a)–(c)

on (d). As can be seen in (d), fusion with all sources of information using SVM has the
best generalisation performance, bringing a new state-of-the-art overall performance on
this benchmark data set. Considering significant performance improvement with respect
to the3 × 3 sets of control experiments, for large range ofα values (> 0.6 for the best
pooled EPC curve of the 9 control experiments over 32 fusion data sets), one can con-
clude that fusion using client dependent and confidence information sources via PKI is a
feasible approach.

7 Conclusions

In this study, we proposed to fuse two seemingly different sources of information us-
ing the Prior Knowledge Incorporation (PKI) framework. These sources of information
are client-dependent and confidence information. Although fusion with both sources of
information has been studied separately in biometric authentication, to the best of our
knowledge, fusing both information sources has not been well investigated before. Be-
cause these information sources are of different nature, intuitively, anewcombination al-
gorithm would be necessary. However, using the proposed PKI framework, we show that



these information sources can be combined at the score level by a linear transformation,
for each source of prior knowledge. The advantage is modularity: prior knowledge can be
incorporated on a per expert basis (the first step) and the resultant PKI scores can be fused
by a second-level classifier using standard machine learning algorihtms (the second step).
Thus, this eliminates the need to devise specific fusion algorithms for this purpose. Based
on the experiments carried out on 32 intramodal and multimodal fusion data sets taken
from the publicly available XM2VTS benchmark database, over 10 fusion classifiers (3
fusion baselines on the original scores; 3 with client-dependent fusion baselines; 3 with
margin-enhanced confidence baselines; and a final fusion with all information sources),
fusion with both information sources using the PKI framework has the best generalisation
performance and its performance is significant over large values of operating (false ac-
ceptance/false rejection) costs as compared to the most competing technique, i.e., fusion
with client-dependent information.
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Fig. 1. Pooled EPC curves from 32 XM2VTS benchmark fusion data sets of three baseline exper-
iments (a)–(c) and fusion with all information sources (d). (a) is fusion with the original scores,
{yi|∀i}, (b) is fusion with F-ratio transformed scores,{yF

i |∀i},and (c) is fusion with margin-
derived confidence,{yiqi|∀i}, each using a GMM, an SVM with linear kernel and the mean op-
erator. The best three pooled EPC curves in (a)–(c) are plotted in (d) (the top three in the legend),
together with fusion with all sources of information, i.e.,{yi, yiqi, y

F
i |∀i} using an SVM with

linear kernel, denoted as “orig-F-margin,SVM”. The pooled EPC of this curve is compared to the
“best overall fusion” (lowest HTER in the EPC curve across differentα) in each of (a)–(c). “orig-F-
margin,SVM” is better than “F-mean” forα > 0.6 according to the HTER significance test at 90%
of confidence. Belowα > 0.6, both EPC curves are notsignificantly different.
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Fig. 2. Pooled ROC curves from 32 XM2VTS benchmark fusion data sets of three baseline exper-
iments (a)–(c) and fusion with all information sources (d). (a) is fusion with the original scores,
{yi|∀i}, (b) is fusion with F-ratio transformed scores,{yF

i |∀i},and (c) is fusion with margin-
derived confidence,{yiqi|∀i}, each using a GMM, an SVM with linear kernel and the mean oper-
ator. The “best” three pooled ROC curves (i.e., the EPC curve with thelowestHTER value across
differentα values) in (a)–(c) are plotted in (d), together with the one that fuses all sources of infor-
mation, i.e.,{yi, yiqi, y

F
i |∀i} using an SVM with linear kernel, denoted as “orig-F-margin,SVM”.

This figure complements Figure 1. As confirmed by the HTER significance test, for FRR above
1.2%, “orig-F-margin,SVM” is significantly different (and better) than “F-mean” but below 1.2%,
their difference isinsignificant. This phenomenon is due to few client accesses as compared to im-
postor accesses. As a result, low FRR values cannot be interpreted reliably compared to low FAR
values.


