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Abstract. Fusing the scores of several biometric systems is a very promising ap-
proach to improve the overall system’s accuracy. Despite many works in the lit-
erature, it is surprising that there is no coordinated effort in making a benchmark
database available. It should be noted that fusion in this context consists not only of
multimodal fusion, but also intramodal fusion, i.e., fusing systems using the same
biometric modality but different features, or same features but using different classi-
fiers. Building baseline systems from scratch often prevents researchers from putting
more efforts in understanding the fusion problem. This paper describes a database
of scores taken from experiments carried out on the XM2VTS face and speaker
verification database. It then proposes several fusion protocols and provides some
state-of-the-art tools to evaluate the fusion performance.

1 Motivation

Biometric authentication (BA) is a process of verifying an identity claim using a person’s behavioral
and physiological characteristics. BA is becoming an important alternative to traditional authentica-
tion methods such as keys (“something one has”, i.e., by possession) or PIN numbers (“something
one knows”, i.e., by knowledge) because it is essentially “who one is”, i.e., by biometric information.
Therefore, it is not susceptible to misplacement or forgetfulness. Examples of biometric modalities
are fingerprint, face, voice, hand-geometry and retina scans [1]. However, today, biometric-based se-
curity systems (devices, algorithms, architectures) still have room for improvement, particularly in
their accuracy, tolerance to various noisy environments and scalability as the number of individuals
increases. Biometric data is often noisy because of deformable nature of biometric traits, corruption
by environmental noise, variability over time and occlusion by the user’s accessories. The higher the
noise, the less reliable the biometric system becomes.

One very promising approach to improve the overall system’s accuracy is to fuse the scores of
several biometric systems [2]. Despite many works in the literature, e.g. [3, 4], it is surprising that
there is no coordinated effort in making a benchmark database available for such task. This work is
one step towards better sharing of score®tmson better understanding of the fusion mechanism.

In the literature, there are several approaches towards studying fusion. One practice is to use vir-
tual identities whereby a biometric modality from one person is paired with the biometric modality
of another person. From the experiment point of view, these biometric modalities belong to the same
person. While this practice is somewhat accepted in the literature, it was questioned whether this
was a right thing to do or not during the 2003 Workshop on Multimodal User Authentication [5].
The fundamental issue here is the independence assumption that two or more biometric traits of a
single person are independent from each dth&nother practice is more reasonable: use off-the-

! To the best of our knowledge, there is no work in the literature that approves or disapproves such
assumption.



shelf biometric systems [6] and quickly acquire scores. While this is definitely a better solution,
committing to acquire the systems and to collect the data is admittedly a very time-consuming pro-
cess. None of the mentioned approaches prevails over the others in understanding the problem of
fusion. There are currently on-going but independent projects in the biometric community to acquire
multimodal biometric databases, e.g., the BANCA [7], XM2VTS [8], BIOMET [9], MYCT [10] and
University of Notre Dame Biometrics multimodal datab&s@&ANCA and XM2VTS contain face

and speech modalities; BIOMET contains face, speech, fingerprint, hand and signature modalities;
MYCT contains ten-print fingerprint and signature modalities and University of Notre Dame Bio-
metrics Database contains face, ear profile and hand modalities acquired using visible, Infrared-Red
and range sensors at different angles. Taking multimodal biometrics in a wider context, i.e., in the
sense that it involves different sensors, the FR@&tabase can also be considered as “multimodal”.

It contains face modality captured using camera (at different angles) and range sensors in different
(controlled or uncontrolled) settings.

As a matter of fact, most reported works in the literature about fusion often concentrates on
treatment of the baseline systems. While baseline systems are definitely important, the subject of
fusion is unfortunately downplayed. Hence, we propose here not only to publish scores resulted
from biometric authentication experiments, but also to provide a clear documentation of the baseline
systems and well-definefision protocolsso that experimental results can be compared. To the
best of our knowledge, this is first ever published score data set. It is intended for comparison of
different fusion classifiersn a common settingVe further provide a set of evaluation tools such as
the DET [11] curve and the recent Expected Performance Curve (EPC) [12], visualisation of False
Acceptance and False Rejection Rates versus threshold, distribution of client and impostor scores,
and the HTER significance test [13], among others.

The scores are taken from the publicly available XM2VTS face and speech d4tdbakeuld
be mentioned here that there exists another software tool that analyses biometric error rate called
PRESS[14]. However, it does not include the DET curve. The tools proposed here, together with the
database, provide a new plot called Expected Performance Curve (EPC) [12] and a significance test
specially designed to test the Half Total Error Rate (HTER) [13].

Section 2 explains the XM2VTS database, the Lausanne Protocols and the proposed Fusion
Protocols. Section 3 documents the 8 baseline systems that can be used for fusion. Section 4 presents
the evaluation criteria, i.e., how experiments should be reported and compared. This is followed by
conclusions in Section 5.

2 Database and Protocols

2.1 The XM2VTS database and the Lausanne Protocols

The XM2VTS database [15] contains synchronised video and speech data from 295 subjects, recorded
during four sessions taken at one month intervals. On each session, two recordings were made, each
consisting of a speech shot and a head shot. The speech shot consisted of frontal face and speech
recordings of each subject during the recital of a sentence. The database is divided into three sets:
a training set, an evaluation set and a test set. The training set (LP Train) was used to build client
models, while the evaluation set (LP Eval) was used to compute the decision thresholds (as well as
other hyper-parameters) used by classifiers. Finally, the test set (LP Test) was used to estimate the
performance.

2 Accessible from http://www.nd.edttvrl/UNDBiometricsDatabase.html

3 Accessible from http://www.frvt.org/FRGC/

4 The database of scores as well as the tools mentioned are freely available for download at
http://www.idiap.ch~norman/fusion



The 295 subjects were divided into a set of 200 clients, 25 evaluation impostors and 70 test
impostors. There exists two configurations or two different partitioning approaches of the training
and evaluation sets. They are called Lausanne Protocol | and Il, denotd®tilaand LP2 in this
paper. In both configurations, the test set remains the same. Their difference is that there are three
training shots per client for LP1 and four training shots per client for LP2. Table 1 is the summary of
the data. The last column of Table 1 is explained in Section 2.2. Note that LP Eval’'s of LP1 and LP2
are used to calculate the optimal thresholds that will be used in LP Test. Results are reported only
for the test sets, in order to be as unbiased as possible (usiag@aori selected threshold). More
details can be found in [8].

2.2 The Fusion Protocols

The fusion protocols are built upon the Lausanne Protocols. Before the discussion, it is important
to distinguish two categories of approachebent-independenand client-dependentusion ap-
proaches. The former approach has only a global fusion function that is comnadinidentities

in the database. The latter approach has a different fusion function for a different identity. It has
been reported that client-dependent fusion is better than client-independent fusion, given that there
are “enough” client-dependent score data. Examples of client-dependent fusion approach are client-
dependent threshold [16], client-dependent score normalisation [17] or different weighing of expert
opinions using linear [18] or non-linear combination [19]. The fusion protocols that are described
here can be client-dependent or client-independent.

It should be noted that one can fuse any of the 8 baseline experiments in LP1 and 5 baseline
experiments in LP2 (to be detailed in Section 3). We propose a full combination of all these systems.
This protocol is calledFP-full. Hence, there are altogeth@t — 8 — 1 = 248 possible combina-
tions for LP1 and2® — 5 — 1 = 26 for LP2. The reasons for minus one and minus the number of
experts are that using zero expert and using a single expert are not valid options. However, some
constraints are useful. For instance, in some situations, one is constrained to using a single biometric
modality. In this case, we propose an intramodal fusieR-{ntramodal) . When no constraint is
imposed, we propose a full combinatidFR-multimodal). FP-intramodal contair®® —5 — 1 = 26
face-expert fusion experiments for LP23 — 3 — 1 = 4 speech-expert fusion experiments for
LP1, 1 face-expert fusion experiment for LP2 agdl — 3 — 1 = 4 speech expert-fusion experi-
ments for LP2. Hence, FP-intramodal contaBfdusion experiments. The second protocol contains
S 3 (°Cw3C,) = 217 combinations, wheréCy, is “n choosek”. As can be seen, the
first three fusion protocols contain an exponential number of combinations. For some specific study,

Table 1. The Lausanne Protocols of XM2VTS database. The last column shows the terms used in the
fusion protocols presented in Section 2.2. LP Eval corresponds to the Fusion protocols’ development
set while LP Test corresponds to the Fusion Protocols’ evaluation set.

Data sets Lausanne Protocols Fusion
LP1 LP2 Protocols
LP Train client accesses 3 4 NIL

LP Eval client accesses [600 3 x 200)|400 € x 200)||Fusion de
LP Eval impostor accesses 40,000 5 x 8 x 200) Fusion de
LP Test client accesses 400 @2 x 200) Fusion eva
LP Test impostor accesss112,000 (70 x 8 x 200) ||Fusion eva
: Due to one corrupted speech file of one of the 70 impostors in this set, this file was deleted,
resulting in 200 less of impostor scores, or a total of 111,800 impostor scores.




itis also useful to introduce a smaller set of combinations, each time using only two baseline experts,
according to the nature of the base-expert. This protocol is celRe@. Three categories of fusion
types have been identified under FP-2, namely multimodal fusion (using different biometric traits),
intramodal fusion withdifferent feature sets and intramodal fusion with themefeature set but
differentclassifiers. There are altogether 32 such combinations (not listed here; see [20] for details).

Note that there are 8 biometric samples in the XM2VTS database on a per client basis. They are
used in the following decomposition: 3 samples are used to train the baseline experts in LP1 (and 4
in LP2) on LP Train. There are remaining 3 samples in the in LP1 Eval (and only 2 in LP2 Eval).
Finally, for both protocols, 2 client accesses for testing intdst set Because fusion classifiers
cannot be trained using scores from thaning set or they are simply not available in the current
settings, we are effectively using the LP Eval to train the fusion classifiers and then LP Test to test
the fusion classifiers’ performance on the LP Test. To avoid confusion in terminology used, we call
LP Eval as thdusion development sahd LP Test as thiision evaluation set

3 Baseline System Description

There are altogether 8 baseline systeisthe 8 baseline systems were used in LP1. On the other
hand, 5 out of 8 were used in LP2. This results in 13 baseline experiments (for LP1 and LP2). The
following explanation describes these systems in terms of their features, classifiers, and the complete
system which is made up of the pair (feature type, classifier).

3.1 Face and Speech Features
The face baseline experts are based on the following features:

1. FH: normalisedace image concatenated with its REBtogram (thus the abbreviatiéid) [21].

2. DCTs: DCTmod2 features [22] extracted from face images with a sizé0ok 32 (rows x
columns) pixels. The Discrete Cosine Transform (DCT) coefficients are calculated from an
8 x 8 window with horizontal and vertical overlaps of 50%, i.e., 4 pixels in each direction.
Neighbouring windows are used to calculate the “delta” features. The result is a set of 35 feature
vectors, each having a dimensionality of 18indicates the use of this small image compared
to the bigger size image with the abbreviatimh

3. DCThb: Similar to DCTs except that the input face image Ras< 64 pixels. The result is a set
of 221 feature vectors, each having a dimensionality of 18.

The speech baseline experts are based on the following features:

1. LFCC: The Linear Filter-bank Cepstral Coefficient (LFCC) [23] speech features were com-
puted with 24 linearly-spaced filters on each frame of Fourier coefficients sampled with a win-
dow length of 20 milliseconds and each window moved at a rate of 10 milliseconds. 16 DCT
coefficients are computed to decorrelate the 24 coefficients (log of power spectrum) obtained
from the linear filter-bank. The first temporal derivatives are added to the feature set.

2. PAC: The Phase Auto-Correlation Mel Filter-bank Cepstral Coefficient (PAC-MFCC) features [24]
are derived with a window length of 20 milliseconds and each window moves at a rate of 10
milliseconds. 20 DCT coefficients are computed to decorrelate the 30 coefficients obtained from
the Mel-scale filter-bank. The first temporal derivatives are added to the feature set.

5 Public contribution of score files is welcome. More will be released in the future as they become
available.



3. SSC Spectral Subband Centroid (SSC) features, originally proposed for speech recognition [25],
were used for speaker authentication in [26]. It was found that mean-subtraction could improve
these features significantly. The mean-subtracted SSCs are obtained from 16 coefficients. The
~ parameter, which is a parameter that raises the power spectrum and controls how much influ-
ence the centroid, is set to 0.7 [27]. Also, the first temporal derivatives are added to the feature
set.

3.2 Classifiers

Two different types of classifiers were used for these experiments: Multi-Layer Perceptrons (MLPs)
and a Bayes Classifier using Gaussian Mixture Models (GMMs) [28]. While in theory both classifiers
could be trained using any of the previously defined feature sets, in practice MLPs are better at
matching feature vectors of fixed-size while GMMs are better at matching sequences (feature vectors
of unequal size). Whatever the classifier is, the hyper-parameters (e.g. the number of hidden units for
MLPs or the number of Gaussian components for GMMs) are tuned on the evaluation set LP1 Eval.
The same set of hyper-parameters are used in both LP1 and LP2 configurations of the XM2VTS
database.

For each client-specific MLP, the feature vectors associated to the client are treated as positive
patterns while all other feature vectaorstassociated to the client are treated as negative patterns. All
MLPs reported here were trained using the stochastic version of the error-back-propagation training
algorithm [28].

For the GMMs, two competing models are often needed: a world and a client-dependent model.
Initially, a world model is first trained from an external database (or a sufficiently large data set) using
the standard Expectation-Maximisation algorithm [28]. The world model is then adapted for each
client to the corresponding client data using the Maximum-A-Posteriori adaptation [29] algorithm.

3.3 Baseline Systems

The baseline experiments based on DCTmod?2 feature extraction were reported in [30] while those
based on normalised face images and RGB histograms (FH features) were reported in [21]. Details
of the experiments, coded in the péieature, classifier) for the face experts, are as follows:

1. (FH, MLP) Features are normaliséehce concatenated witHistogram features. The client-
dependent classifier used is an MLP with 20 hidden units. The MLP is trained with geometri-
cally transformed images [21].

2. (DCTs, GMM) The face features are the DCTmod?2 features calculated from an input face
image of40 x 32 pixels, hence, resulting in a sequence of 35 feature vectors each having 18
dimensions. There are 64 Gaussian components in the GMM. The world model is trained using
all the clientsin the training set [30].

3. (DCTb, GMM) Similar to (DCTs,GMM), except that the features used are DCTmod2 features
calculated from an input face image &b x 64 pixels. This produces in a sequence of 221
feature vectors each having 18 dimensions. The corresponding GMM has 512 Gaussian com-
ponents [30].

4. (DCTs, MLP) Features are the same as those in (DCTs,GMM) except that an MLP is used in
place of a GMM. The MLP has 32 hidden units [30]. Note that in this case a training example
consists of dig singlefeature vector with a dimensionality 85 x 18. This is done by simply
concatenating 35 feature vectors each having 18 dimerfsions

5 This may explain why MLP, an inherently discriminative classifier, has worse performance com-
pared to GMM, a generative classifier. With high dimensionality yet having only a few training



5. (DCTb, MLP) The features are the same as those in (DCTb,GMM) except that an MLP with
128 hidden units is used. Note that in this case the MLP in trained singe feature vector
with a dimensionality oR21 x 18 [30].

and for the speech experts:

1. (LFCC, GMM) This is the Linear Filter-bank Cepstral Coefficients (LFCC) obtained from
the speech data of the XM2VTS database. The GMM has 200 Gaussian components, with the
minimum relative variance of each Gaussian fixed to 0.5, and the MAP adaptation weight equals
0.1. This is the best known model currently available [31] under clean conditions.

2. (PAC, GMM) The same GMM configuration as in LFCC is used. Note that in general, 200-
300 Gaussian components would give about 1% of difference of HTER [31]. This system is
particularly robust to very noisy conditions (less than 6 dBs, as tested on the NIST2001 one-
speaker detection task).

3. (SSC, GMM) The same GMM configuration as in LFCC is used [27]. This system is known
to provide an optimal performance under moderately noisy conditions (18-12 dBs, as tested on
NIST2001 one-speaker detection task).

3.4 Preliminary Correlation Analysis

A preliminary analysis was carried out on the FP-2 protocol. There are 32 fusion data sets here and
each data set contains scores of two experts. Each data set contains two classes: client or impostor
scores. For each class of each data set, we computed the correlation between scores of two experts
in the linear space. The GMM and SVM scores are used as they are. Since correlation measures the
linear relationship among variables, it fails to measure the MLP scores which are trained using a tanh
or a sigmoidnonlinearactivation function. An inverse of tanh or sigmoid function is applied to the
scores prior to computing the correlation values. With the absence afdtisctiveprocedure, the

strong correlation isystematicallyinder-estimated for the intramodal fusion datasets. The resultant
distribution of these correlation values, categorised into intramodal and multimodal fusion datasets,
are shown in Fig. 1. As can be observed, the multimodal fusion datasets have correlation around
zero whereas the intramodal fusion datasets have relatively high correlation values. This is a strong
indication that the gain from fusion using the intramodal data sets will be less than that from using
the multimodal data sets.

4 Performance Evaluation

There are three important concepts about evaluation of a biometric system: (1) types of errors in
biometric authentication, namely false acceptance, false rejection and their combined error called
Weighted Error Rate (WER), (2) threshold criterion and (3) evaluation criterichréshold crite-

rion refers to a strategy to choose a threshold to be appliesh@valuation (test) selt is necessarily

tuned ora development (training) sefn evaluation criterionis used to measure the final generali-
sation performance and is necessarily calculatedroavaluation setA fully operational biometric
system makes a decision using the followdwegision function

accept if y(x) > A

F(x) = reject otherwise

1)
examples, the MLP cannot be trained optimally. This may affect its generalisation on unseen ex-
amples. By treating the features as a sequence, GMM was able to generalise better and hence is
more adapted to this feature set.
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Fig. 1. Smoothed distribution (measured as unnormalised likelihood using Parzen window tech-
nigue) of class-dependent correlations on the 32 fusion data sets of the FP-2 protocol according

to the two categories of fusion: multimodal or intramodal. Since each data set has two classes (client
and impostor), there are altogeti®ex 32 = 64 correlation values.

wherey(x) is the output of the underlying expert supporting the hypothesis that the biometric sample
receivedx belongs to a client. The variables that follow will be derived frg(x). For simplicity,

we write y instead ofy(x). The same convention applies to variables that follow. Because of the
accept-reject outcomes, the system may make two types of errors, i.e., false acceptance (FA) and
false rejection (FR). Normalised versions of FA and FR are often used and called false acceptance
rate (FAR) and false rejection rate (FRR), respectively. They are defined as:

_ FA(4)

FAR(A) = =17, @)
FRR(A) = F]Fff(é) . (3)

where FA and FR count the number of FA and FR accesses, respectively aadd NC' are the
total number of impostor and client accesses, respectively.
To choose an “optimal threshold}, it is necessary to define a threshold criterion. This has to
be done on a development set. Two commonly used criteria are the Weighted Error Rate (WER) and
Equal Error Rate (EER). WER is defined as:

WER(a, A) = aFAR(A) + (1 — a) FRR(A), @)

wherea € [0, 1] balances between FAR and FRR. A special case of WER is EER, which assumes
that the costs of FA and FR are equal. It further assumes that the class prior distributions of client and
impostor accesses are equal. As a resuit 0.5. Let A7, be the optimal threshold thatinimises

WER on adevelopment selt can be calculated as follows:

A" = arg mAinWER(a, A). (5)

Note that the EER criterion can be calculated similarly by fixing: 0.5.

Having chosen an optimal threshold using the WER threshold criterion discussed previously, the
final performance is measured using Half Total Error Rate (HTER). Note that the threshold is found
with respect to a given. It is defined as:

_ FAR(AZ) + FRR(A})

HTER(AL) = 5 . (6)




Itis important to note that the FAR and FRR do not have the sas@ution Because there are more
simulated impostor accesses than the client accesses, FRR changes more drastically when falsely
rejecting a client access whereas FAR changes less drastically when falsely accepting an impostor
access. Hence, when comparing the performance using KIAERfrom two systems (at theame

A}), the question of whether the HTER difference is significant or not has to take into account the
imbalanced numbers of client and impostor accesses. This issue was studied in [13], and as a resullt,
the HTER significance test was proposed. Finally, it is important to note that HTER in Egn. (6) is
identical to EER (WER withe = 0) except that HTER is @erformance measuralculated on

an evaluation sewhereas EER is ¢hreshold criterionoptimised on adevelopment seBecause

of their usage in different context, EER should not be interpreted as a performance measure (in
place of HTER) to compare the performance of different systems. Such practice, to our opinion,
leads to amunrealisticcomparison. The argument is that in an actual operating system, the threshold
has to be fixedx priori. To distinguish these two concepts, when discussing HTER calculated on

a development set using a threshold criterion also calculated on the same set, the HTER should be
calleda posterioriHTER. When discussing HTER calculated on an evaluation set with a threshold
optimised on a development set, the HTER should be calledori HTER.

The most commonly used performance visualising tool in the literature is the Decision Error
Trade-off (DET) curve [11] and Receiver’'s Operating Characteristic (ROC) EuA/®ET curve
is a ROC curve plotted in normal probability co-ordinate scales in its X- and Y-axes. It has been
pointed out [12] that two DET curves resulting from two systems are not comparable because such
comparison does not take into account how the thresholds are selected. It was argued [12] that such
threshold should be chosenpriori as well, based on a given criterion. This is because when a
biometric system is operational, the threshold parameter has to bedfigedri. As a result, the
Expected Performance Curve (EPC) [12] was proposed. This curve is constructed as follows: for
various values ofv between 0 and 1, select the optimal threshdlen a development (training)
set, apply it on the evaluation (test) set and compute the HTER on the evaluation set. This HTER is
then plotted with respect ta. The EPC curve can be interpreted similarly to the DET curve, i.e.,
the lower the curve, the better the generalisation performance. Although EB¢mmendediue
to the popularity of ROC and DET curves, it is reasonable to report experimental results with these
curves as well alongside with EPC. In this case, the pair of FAR and FRR values that constitute a
point in ROC can be derived from the FAR and FRR terms in Eqn. (6), i.e., with the thresfjold
derived from the development (training) set.

5 Conclusions

In this study, we presented a score-level fusion database, several fusion protocols in different scenar-
ios and some evaluation tools to encourage researchers to focus on the problem of biometric authen-
tication score-level fusion. To the best of our knowledge, there has been no work in the literature that
provides a benchmark database for score-level fusion. Hence, the efficiency of fusion classifiers can
now be compared on equal platforms. We also further encourage contribution of scores following the
samelausanne Protocols to enrich this corpus. An extended version of this report, which includes
a greater level of details on the evaluation tools, can be found in [20]. Finally, some baseline results
on this data set using the fusion protocol with two experts (FP-2) can be found in [32].

" A good introduction can be found in “http://www.anaesthetist.com/mnm/stats/roc/”.
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