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ABSTRACT ity as the number of individuals increases. The focus of this
study is to improve the system accuracy by directly min-

In this paper, we present a simple yet effective way to im- imising the noise by using multiple virtual samples, when

prove a face verification system by generating multiple vir- multiple real samples are not available
tual samples from the unique image corresponding to an . '

b niq 9 P g o In the literature, to the best of our knowledge, the closest
access request. These images are generated using simple ) . i

. . : . work to ours is the one reported by Kittleral[1]. The fun
geometric transformations. This method is often used dur_damental difference is that they assume that multiple sam-
ing training to improve accuracy of a neural network model I ilable. | Liife situati h f .
by making it robust against minor translation, scale and ori- ples are avaravle. In real-iiie situation, where a tace im-

: . o ' . age is scanned and transfered over a communication line,

entation change. The main contribution of this paper is to

introduce such method during testing. By generathig obtaining multiple face images for each access may not be

: : : . feasible. In this case, “virtual” samples could be used. Al-
images from one single image and propagating them to a

trained network model, one obtaifé scores. By merging though there is no gain in _|nformat|0r_1, in this baper, It 'S
. ; shown that accuracy can still be exploited by reducing vari-
these scores using a simple mean operator, we show that the

variance of merged scores is decreased by a factor betweefi ¢ of the virtual samples. Moreover, this approach can be

1 andN. An experiment is carried out on the XM2VTS easily generalised to other pattern recognition problems.

database which achieves new state-of-the-art performances. An. alternative ap'pro.ach to creatlng vgnaﬂops due to ge-
ometric transformation is to synthesize virtual images from

an approximated user-customized 3D model. This approach,

1. INTRODUCTION although maybe more effective than the proposed method,

_ _ o _ . is not considered here due to the possible inaccuracy of ap-
Biometric authentication (BA) is the problem of verifying proximating the model in the first place. Our approach does

an identity claim using a person’s behavioural and physi- not require such an estimation.

ological characteristics. BA is becoming an important al- The rest of this paper is organised as follows: Section 2
ternative to traditional authentication methods such as keysexplains the theoretical bounds in the expected gain coming
(“something one has”, i.e., by possession) or PIN numbersfom averaging scores; a description of the experiment can

(“something one knows”, i.e., by knowledge) because it is pe found in Section 3; this is followed by conclusions.
essentially “who one is”, i.e., by biometric information. There-

fore, it is not susceptible to misplacement, forgetfulness or

reproduction. Examples of biometric sources are finger- 2. VARIANCE REDUCTION VIA AVERAGING
print, face, voice, hand-geometry and retina scans. Genera& 1. Variance reduction

introduction of biometrics can be found in [5]. Biometric ~

data is often noisy because of the failure of biometric de- | et us assume that the measured relationship between a fea-
vices to capture the plastic nature of biometric traits (e.g. ture vectorx; and its associated scogecan be written as:
deformed fingerprint due to different pressures), corruption

by environmental noise, variability over time and occlusion yi = f(xi) + mi. (1)
by the user’s accessories. The higher the noise, the less re-

liable the biometric system becomes. Current biometric- where f(-) is the true relation ang; is a random additive
based security systems (devices, algorithms, architecturespoise with zero mean. The meanyobver N trials, denoted
still have room for improvement, particularly in their accu- asy is:
racy, tolerance to various noisy environments and scalabil-

1 N
7= DU )
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“true” measure: and lower bounds of such a gain? Here, we refer to the
work of Bishop [2, Chap. 9] who has shown that by av-

Ely] = E[f(x)]+ E[n] (3)  eraging scores aW classifiers, a committee could perform
= f(x). (4) better than a single classifier. The assumptions were that
. _ each classifier was not correlated and that the error of each
Moreover, the variance of can be written as: classifier had zero mean. He showed that:
1 1 N
Varly| = NVaVM (5) err, = e Zerri (6)
=1
Therefore, it can be concluded that wh¥rscores of a sin-
gle biometric source are averaged, noise that occurs due to = Nmean{erri). (7)

classification can be reduced by a factoNaf The effect of ) ) )

averaging in Equation 2 can best be observed using syntheti¥here err is the error of the committee and gis the error
cally generated data in Figure 1. Assume that in the original @Ssociated to theth C"?‘SS'f'er- Note that the major differ-
problem, the genuine user scores follow a normal distribu- €Nce between Bishop’s context and ours is that scores are
tion of mean 1.0 and variance 0.9, denoted\&d., 0.9) due to variation ofV classifiers. In our context, scores are
and that the impostor scores follow a normal distribution of due to variation in the “virtual” samples obtained frak

N (~1,0.6) (both graphs are plotted with '+). If for each geometric transformations. The indeis referred to a sam-
access, three confidence scores are available, according t8l€ hereinafter. . o
Equation 5, the variance of the resulting distribution willbe ~ Due to the false assumption of uncorrelation in scores
reduced by a factor of three. Both resulting distributions obtained from virtual samples, the error reduction obtained
are plotted with '0’. Note the area where both the distribu- USing the mean operator will not b€ as shown in Equa-.
tions cross before and after. This area corresponds to theiOn 7 butless. This equation should be rightly written as:

zone where minimum amount of mistakes will be commit-

1
ted given that the threshold is optimial The decrease in er. = —mearier) (8)
this area means an improvement in the recognition rate. In 1<a<N.
I — wherea can be understood as a “gain” in error reduction. It
| -+~ Impostor pdf

# Lo imposr veregea pr shows that the maximum gain in averaging scorés isith

: respect to the average performance of each virtual sample.
This is, in practice, not attainable since the scores are cor-
related. The minimum gain, according to Equation 8 is 1,
which means that there is no gdit one does not loose
in the combination neither. This can be understood as fol-
lows: If the errors made by each virtual score are dependent,
i.e., they make exactly the same error in the extreme case

Fig. 1. Averaging scores distribution in a two-class problem (Vi j(err; = err;)), then meaterr) = err; = err,, which
implies thate = 1.

Scores.

general, the more samples are used, the sharper (taller and
with shorter tails at both ends) both the impostors’ and the
clients’ score distributions become. The sharper they are
the lower the area where these two distributions overlap.
The lower this area is, the lower the number of mistakes The XM2VTS face database is used for this purpose be-

3. EXPERIMENT

'3.1. Database and Protocols

committed. cause it is a benchmark database with well-defined proto-
cols called the Lausanne Protocols [3]. The XM2VTS database
2.2. Error reduction contains synchronized image and speech data recorded on

295 subjects during four sessions taken at one month in-

The above discussion is only true when scores are corrupteqgryals. On each session. two recordings were made, each
by noise with zero-mean and uncorrelated. In reality, one consisting of a speech shot and a head rotation shot.

knows that scores coming from virtual samples are depen-  The gatabase was divided into three sets: a training set,

dent on the original image. What would then be the upper g evaluation set, and a test set. The training set was used
1optimal in the Bayes sense, when (1) the cost and (2) probability of to build client qugls, while Fhe gvaluatlon set Wa§ used to

both types of errors are equal. compute the decision (by estimating thresholds for instance,




or parameters of a fusion algorithm). Finally, the test set of scales, ir2 directions (zooming-in and zooming-out), in-
was used only to estimate the performance of the system. cluding the original scale. In the experiment, 4 shifts and 2
The 295 subjects were divided into a set of 200 clients, scales are used. This produces 330 virtual images per origi-
25 evaluation impostors, and 70 test impostors. Two dif- nal image.
ferent evaluation configurations were defined. They differ In the following experiments, we compared the system
in the distribution of client training and client evaluation from [4] (denoted “original”) to our system (denoted “av-
data. Both the training client and evaluation client data were eraged”). In the original system, geometric transformations
drawn from the same recording sessions for configuration Iwere added to the training set only, while in the averaged
(LP1) which might lead to biased estimation on the evalua- system, they were also added to the evaluation and test sets.
tion set and hence poor performance on the test set. For con-  The training set is used to train an MLP for each client
figuration Il (LP2) on the other hand, the evaluation client and the evaluation set is used to stop the training using an
and test client sets were drawn from different recording ses-early-stopping criterion. At the end of training, the trained
sions which might lead to more realistic results. More de- MLP model is applied on the evaluation set again to es-
tails can be obtained from [3]. timate the global threshold that optimises the Equal Error
In this database, each access is represented by only onRate (EER). Once all parameters are set, including thresh-
face image. We can increase the number of images by usingld, the trained MLP model is applied on the test set. Thus
geometric transformations. In this way, we obtain multiple the obtained Half Total Error Rate (HTER) on the test set
“virtual” samples from a single access. For each virtual im- is said to bea priori, while if the threshold was optimis-
age, features will be extracted in the same way as a real facéng EER on the test set, it would be callagosteriori Of
image. Both feature extraction and geometric transforma-course, the priori results are more realistic. In the exper-
tions are explained in sections below. iment, the optimised client dependent MLPs Rachidden
units each.

3.2. Features

: . 3.4. Results
In the XM2VTS database, a bounding box is placed on a

face according to eyes coordinates located manually. ThisThe experiments are carried out on LP1 and LP2 config-
assumes a perfect face detection. The face is cropped andrations of XM2VTS database. The results are shown in
the extracted sub-image is downsized t80ax 40 image.  Tables 1 and 2. Odd lines in these tables show the HTERSs
After enhancement and smoothing, the face image has a feaof the original approach while even lines show the HTERs
ture vector of dimensioh200. after averaging virtual scores. In all comparisons, the im-
In addition to these normalised features, RGB (Red- provements are obvious. The HTERs in Table 1apos-
Green-Blue) histogram features are used. To construct thiseriori and thus not realistic, but nevertheless give insights
additional feature set, a skin colour look-up table must first of the expected improvements. The HTERs in Table 2aare
be constructed using a large number of colour images whichpriori. As expected, the performance obtained by averaging
contain only skin. In the second step, face images are fil-is always superior. Moreover, to the best of our knowledge,
tered according to this look-up table. Unavoidably, non- the newly obtained priori results appear to be the best pub-
skin pixels are captured as well. This noise will be sub- lished ones on this benchmark database.
mitted to a classifier to discriminate its degree of relevance.
For each color channel, a histogram is built usgdis-
crete bins. Hence, the histograms of three channels, whe
concatenated, form a feature vectord6felements. More
details about this method, including experiments, can be o

r]I'able 1. Performace of averaging scores versus original
b_approach based anposterioriselected thresholds

. Data sets| Models | FA[%] | FR[%] | HTER[%)]
tained from [4]. LP1Eval| Original | 1.667| 1.667 1667
LP1 Eval | Averaged| 1.333| 1.333 1.333

3.3. Geometric Transformations LP2 Eval | Original 1.250| 1.250 1.250
) . LP2 Eval | Averaged| 1.107| 1.000 1.054

The extenQed number of pgtterns is computed such that given LP1 Test| Original 1817 1.750 1783
anaccess mggé{ geometric transformations are performed. LP1 Test| Averaged| 1.692| 1.750 1.721
This number is calculated as foIIOV\_IN. = 2x Ax B, which LP2 Test| Original 1726 1.750 1.738
shows the mirrored number of shifted and scaled face pat- LP2 Test| Averaged| 1.514| 1.500 1.507

terns. A = number of shiftsx 8 + 1 is the total number of
shifts, in8 directions, including the original frame, for each
scale. B = number of scalex 2 + 1 is the total number



(a) False

(b) Correct acceptance

Table 2. Performace of averaging scores versus original
approach based anpriori selected thresholds

Data sets| Models | FA[%] | FR[%] | HTER[%]
LP1 Test| Original | 1.230| 2.750 1.990
LP1 Test| Averaged| 1.474| 1.750 1.612
LP2 Test| Original 1.469| 2.250 1.860
LP2 Test| Averaged| 1.285| 1.750 1.518

3.5. Analysis of the results

One insight to examine the effectiveness of this method is
by looking at the probability density functiopdf) of the

330 virtual scores with respect to a false rejection and a cor-
rect acceptance. This is shown in Figure 2. When given

rejection

“

+ False rejection pdf
—— Correct acceptance pdf
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(c) Corresponding histograms

Fig. 2. Examples of “bad” and “good” photos and their cor-
responding distribution of virtual scores for client 006

an upright-frontal image of a client within a certain allowed
degree of transformation, one obtains a sharply pigkefd
(with very low variance) around the mean 1. The MLP as-
sociated with client 006, in this case, was trained to give a
response ofl for a genuine access andl for an impos-

tor access. When the original image is “out” of the allowed
transformation range, thedf of virtual scores has a large

variance and a mean displaced away from 1. Note that the

logarithmic scale for the probability is used in the graph to

amplify the changes in distribution accross the score range

[—1,1].
While a single image normally produces only one score,

a set of virtual images has the advantage of producing an-

other information: the score distribution. One way to mea-
sure this distribution is by its variance. For instance, for the
example above, the variance for the correct acceptance cas
is 1.5670e-05 while the variance for the false rejection case
is 0.0181. Clearly, variance of virtual scores can give sup-
plementary information that the original approach cannot.
In general, thepdf (not just the variance) could probably
provide useful insights to improve this method further.

4. CONCLUSION

By applying NV various geometric transformations to a given
original face image access, it is shown that one could re-
duce the variance of the original score by a factor between
1 andN, by taking into account the assumption that these
N image samples are dependent on the original image. As
a conseqguence, the classification error, with respect to the
original method is reduced by a factor between 1 ahds
well.

To put in a formal framework, our proposed approach
can be summarised as:

1

Y= > f(hlg(x,1)

teT

9)

instead ofy = f(h(x)) for the test set, where, € 7 is

a set of geometric transformation parameters applied by
(the transformation function) on the feature vectorh is

a feature extraction function aris a trained classifier on
h(f(x,t)) overt € T with x sampled from a training set.
Equation 9 explains why this method is robust against minor
geometric transformations: it is integrated over the space
of these transformations and hence achieves invariance over
this space.

This method has the advantage of being simple to imple-
ment. Furthermore, it does not require multiple real exam-
ples. This makes it easily extendable to many general class-
fication and regression problems. The only added complex-
ity during testing is proportional to the number of artificially
generated samples, given that a suitable transformation for
a given data set can be defined.
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