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Abstract. We propose a network model of spiking neurons, without
preimposed topology and driven by STDP (Spike-Time-Dependent Plas-
ticity), a temporal Hebbian unsupervised learning mode, biologically ob-
served. The model is further driven by a supervised learning algorithm,
based on a margin criterion, that has effect on the synaptic delays linking
the network to the output neurons, with classification as a goal task. The
network processing and the resulting performance are completely explain-
able by the concept of polychronization, proposed by Izhikevich [1]. The
model emphasizes the computational capabilities of this concept.

1 Introduction

Spiking Neuron Networks (SNNs) derive their strength and interest from an
accurate modeling of synaptic interactions between neurons, taking into account
the time of spike emission. Although they are potentially more powerful than
traditional artificial neural networks, discovering efficient learning rules adapted
to SNNs is still a burning topic. A current trend is to propose computational
justifications for unsupervised learning rules based on synaptic plasticity [2],
especially STDP. New concepts and network architectures have been proposed,
with the Echo State Network (ESN) [3] and the Liquid State Machine (LSM) [4]
but learning in such networks is still hard to control.

We define a SNN model built on biological bases, with synaptic plasticity, but
conceived for supervised classification. The network architecture is a sparsely
connected set of neurons, without preimposed topology, as in ESN and LSM.
The learning rule we propose is based on the conjunction of two main ideas:
The interest of programmable delays for computational power and learnabil-
ity (proved by complexity analyses, as in [5]); The notion of polychronization,
as defined by Izhikevich [1] who proposes that the emergence of polychronous
groups (see Section 5 for details), with persistent activation, could represent a
stimulation pattern or a prototype.

The principle of our model is to adapt the delays of the network output in
order to enhance the influence of the polychronous groups activated by a given
pattern towards an output neuron corresponding to the pattern class.

Section 2 describes the model of SNN and Section 3 defines the two-scale
learning mechanism. The performance of the model for a classification task is
studied through experiments related in Section 4. Section 5 presents the notion
of polychronization and explains the internal behavior of the model.



2 Spiking Neuron Network model

Network architecture The classifier is a set of M cells (internal network),
interfaced with a layer of K input cells and 2 output cells, one for each class
(Figure 1). The network is fed by input vectors of real numbers, represented by
spikes in temporal coding: the higher the value, the earlier the spike emission
towards the network. The index of the first firing output cell provides the class
number, as an answer of the network to the input pattern.
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Fig. 1: Architecture of the Spiking Neuron Network as a classifier.

Each cell is a spiking neuron. Each synaptic connection, from neuron Ni

to neuron Nj , is defined by a weight wij and a transmission delay dij . The
internal network is composed of 80% excitatory neurons and 20% inhibitory
neurons. The connectivity is random and sparse with probability 0.3 inside the
internal network. For pattern stimulation, the input cells are connected to the
internal cells with probability 0.1. For class detection, the internal cells are fully
connected to each output neuron.

Model of Neuron The neuron model is an SRM0 (“Spike Response Model”),
as defined in [6], where the state of a neuron Nj is dependent on its last spike
time t

(f)
j only. The next firing time of Nj is governed by its membrane potential

uj(t) and its threshold θj(t). Both variables are functions of the last firing times
of the neurons Ni belonging to the set Γj of neurons presynaptic to Nj:

uj(t) = η(t − t
(f)
j )︸ ︷︷ ︸

threshold kernel

+
∑
i∈Γj

wij ε(t − t
(f)
i − dij)︸ ︷︷ ︸

potential kernel

and uj(t) ≥ ϑ =⇒ t
(f+1)
j = t

(1)
where the potential kernel is modelled by a Dirac increase in 0, followed by an
exponential decrease, from value umax = 8mV in 0+ towards 0, with a time
constant τm = 2ms. The firing threshold ϑ is set to −50mV and the threshold
kernel simulates an absolute refractory period τabs = 7ms, when the neuron
cannot fire again, followed by a reset to the resting potential urest = −65mV .
Simulations are computed in discrete time, with 1ms steps.

Synaptic Plasticity Each synaptic weight wij can be adapted by STDP
(Spike-Time-Dependent Plasticity), a form of synaptic plasticity based on the
respective order of pre- and postsynaptic firing times. Basically, a causal order
(pre- just before post-) strengthens the connection whereas a non-causal order



decreases its weight. A STDP temporal window is a function used to calculate
the weight modification ∆W as a function of the time difference ∆t = tpost−tpre =

t
(f)
j −(t

(f)
i +dij) and can be computed at the level of neuron Nj . We use excitatory

and inhibitory temporal windows as proposed in [7] and apply a multiplicative
weight update.

3 Learning Mechanism

There are two concurrent learning mechanisms in the model: An unsupervised
learning of weights by STDP, operating in the millisecond range, at each new
impact tpre or emission tpost of a spike, and a supervised learning of output
delays, operating in the range of 100ms, at each pattern presentation.

STDP Implementation STDP is applied to the weights of internal cells only.
The other weights of connections are kept fixed, with value wIN = 3 from input
layer to internal network and value wOUT = 0.5 from internal network to output
neurons. The delays dij take integer values, randomly chosen in {1, . . . , 20},
both in the internal network and towards output neurons. Delays from input
cells are set to zero, for an immediate transmission of input information. We
switch to machine learning in designing a supervised mechanism, based on a
margin criterion, for adapting the output delays of the model.

Delay Adaptation Algorithm The goal of the supervised learning mecha-
nism we propose is to modify the delays from active internal neurons to output
neurons in such a way that the output neuron corresponding to the target class
fires before the one corresponding to the non-target class. Moreover, as it has
been shown in the machine learning literature, maximizing a margin between
the positive and the negative class yields better expected generalization perfor-
mance [8]. More formally, we thus try to minimize the following criterion:

C =
∑

p∈class1

|t1(p) − t2(p) + ε|+ +
∑

p∈class2

|t2(p) − t1(p) + ε|+ (2)

where ti(p) represents the firing time of output neuron i answering to input pat-
tern p, ε represents the minimum delay margin we want to enforce between the
two firing times, and |z|+ = max(0, z). In order to minimize this criterion, we
adopt a stochastic training approach, iterating the loop:

After the presentation of a given input pattern p,

if difference of firing times between target and non-target output neuron < ε,

then for each output neuron, select the connection that received the decisive

impact, among presynaptic neurons responsible for the output spike,

• for target neuron : decrement the delay (−1ms)

• for non-target neuron : increment the delay (+1ms)

Hence, at each step, we decrease the probability of an error in the next answer
to a similar input and we help for a larger time range between the 2 output firing.



4 Classifier Performance

Experiments After an initialization phase generating a high disordered ac-
tivity, a learning phase is run, from 2000 to 11000ms (in simulated biological
time), with successive alternated presentations of two input patterns, similar
to Izhikevich stimulation patterns (Fig. 12 in [1]). Two oblique bars represent
examples for class 1 and class 2 respectively (bottom of Figure 2, left).

A spike raster plot presents all the firing times of all the neurons: neuron
index with respect to time (in ms), for K = 10 input neurons (bottom), followed
by M = 100 internal neurons (including 20 inhibitory neurons). Firing times of
the two output neurons are isolated at the top.

Afterwards, a generalization phase is run, with noisy patterns: Each spike
time occurs at t± η where t is the firing time of the corresponding input neuron
for the example pattern of the same class and η is some uniform noise.
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Fig. 2: Spike raster plots, near the end of the learning phase (left) and during
generalization phase, with noisy inputs, η = 8 (right).

Results As can be observed on Figure 2 (left), the internal network activity
stabilizes on a persistent alternative between two different spike-timing patterns,
one for each class. The firing times of the two output neurons reflect the appli-
cation of the delay adaptation algorithm: Starting from simultaneous firing (not
shown), step by step, they slowly dissociate their responses, becoming selective
to the class the input belongs to. In the left frame of Figure 2, the time interval
separating the two output spikes has become stable, since the margin ε has been
reached.

Slight variations in network activity are due to the still running STDP adap-
tation of weights. At the end of the learning phase, half the excitatory weights
are distributed from 0.1 to 0.7, the other being close to 0. Inhibitory weights
are widely distributed, mainly between 0.5 and 0.9, and around 0.

In generalization phase, although the internal network activity is clearly dis-
rupted, the classification performance remains good: average success rate, on
100 noisy patterns of each class, is 96% for η = 4, and still 81% for η = 8 (Fig. 2,
right), where the input patterns are hard to discriminate by a human observer.



5 Polychronization

The links between high-level cognitive processes (active perception, memoriza-
tion via neuron assemblies) and the dynamics of spike timing inside natural or
artificial neural networks is presently an active research area. Several hypotheses
have been proposed, mainly based on synchronization (e.g. synfire chain [9]).

Polychronous Groups The hypothesis of synchronization is too much re-
strictive when it comes to grasp the full power of neuron assemblies processing.
Instead, Izhikevich [1] proposes the notion of polychronization. Based on the
connectivity between neurons, a polychronous group is a possible stereotypical
time-locked firing pattern. Since neurons of a polychronous group have matching
axonal conduction delays, the group can be the basis of a reproducible spike-
timing pattern: Firing of the first few neurons with the right timing is enough
to activate most of the group. As any neuron can be activated within several
polychronous groups, at different times, the number of coexisting polychronous
groups in a network can be very huge, thus opening possibility of high memory
capacity.

In our model, all the potential polychronous groups in the internal network,
depending on its topology and the values of the delays, can be inventoried. We
have detected 104 potentially activable polychronous groups in a network of
M = 100 neurons, and more than 3000 in a network of M = 200 neurons.
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Our model proposes a way to confirm the link between a correct identification
of an input presentation and persistent spike-timing patterns inside the network.

Learning Process Justification First, we observed (data not shown) that
most of the neurons responsible for delay adaptation belong to active poly-
chronous groups. Second, we analysed the evolution of the polychronous groups
activation at two stages of the learning phase (Figure 4). The two frames show
the ratio of activation (in percentage) of a representative sample of polychronous
groups (# 60 to 100) in response to each input pattern : black for class 1 and
grey for class 2. A large amount of polychronous groups are activated at the
beginning of learning (left), while less groups are activated at the end of the sim-
ulation (right). This can be considered as a consequence of regulation generated
by STDP: Only a few polychronous groups are selected to represent the input
patterns. We also observe that polychronous groups specialize for one particu-
lar class (right) instead of answering for both of them, as they did first (left).



Groups 67 and 95 perfectly illustrate the phenomenon. This observation vali-
dates that synaptic plasticity provides the network with valuable adaptability
and highlights the importance of combining STDP with delay learning.
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Fig. 4: Activation ratio from 2000 to 5000ms, and then from 8000 to 11000ms.

6 Conclusion

With supervised classification as a goal task, we have proposed a two-scale learn-
ing mechanism for SNNs, with unconstraint topology. The algorithm for delay
adaptation is computationally easy to implement. Moreover, the way the learn-
ing algorithm operates can be well explained by the concept of polychronization
and the internal network is no longer a black-box, contrary to the ESN or LSM
models. The model has shown promising performance for learning and general-
ization on a classification task. This latter point is currently under investigation
in larger scale experiments, from OCR benchmark: first trials on a two-class
version of the USPS digit database yielded encouraging results.
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