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Abstract. In this paper we present a text independent on-line writer identifica-
tion system based on Gaussian Mixture Models (GMMs). This system has been
developed in the context of research on Smart Meeting Rooms. The GMMs in our
system are trained using two sets of features extracted from a text line. The first
feature set is similar to feature sets used in signature verification systems before.
It consists of information gathered for each recorded point of the handwriting,
while the second feature set contains features extracted from each stroke. While
both feature sets perform very favorably, the stroke-based feature set outperforms
the point-based feature set in our experiments. We achieve a writer identification
rate of 100% for writer sets with up to 100 writers. Increasing the number of
writers to 200, the identification rate decreases to 94.75%.

1 Introduction

The aim of a Smart Meeting Room is to automate standard tasks usually performed
by humans in a meeting [12, 13, 15, 22]. These tasks include, for instance, note taking
and extracting the important issues of a meeting. To accomplish these tasks, a Smart
Meeting Room is equipped with synchronized recording interfaces for audio, video and
handwritten notes.

The challenges posed in Smart Meeting Room research are manifold. In order to
allow indexing and browsing of the recorded data [23], speech [14], handwriting [9]
and video recognition systems [4] need to be developed. Another task is the segmen-
tation of the meeting into meeting events. This task can be addressed by using single
specialized recognizers for the individual input modalities [15] or by using the primi-
tive features extracted from the data streams [12]. Further tasks deal with the extraction
of non-lexical information such as prosody, voice quality variation and laughter. To au-
thenticate the meeting participants and to assign utterances and handwritten notes to
their authors, identification and verification systems have to be developed. They are
based on speech [11] and video interfaces [5, 18] or on a combination of both [2].
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Fig. 1. Picture of the IDIAP Smart Meeting Room with the whiteboard to the left of the presen-
tation screen
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Fig. 2. Schematic overview of the IDIAP Smart Meeting Room (top view)

The writer identification system described in this paper has been developed for the
IDIAP Smart Meeting Room [13]. This meeting room is able to record meetings with
up to four participants. It is equipped with multiple cameras, microphones, electronic
pens for note-taking, a projector, and an electronic whiteboard. Figure 1 shows a picture
of this room, and a schematic overview is presented in Fig 2.

The whiteboard shown in Figs. 1 and 2 is equipped with the eBeam4 system, which
acquires the text written on the whiteboard in electronic format. A normal pen in a
special casing is used to write on the board. The casing sends infrared signals to a
triangular receiver mounted in one of the corners of the whiteboard. The acquisition
system outputs a sequence of(x, y)-coordinates representing the location of the pen-
tip together with a time stamp for each location. An illustration of the data acquisition
process is shown in Fig. 3.

4 eBeam System by Luidia, Inc. – www.e-Beam.com
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Fig. 3. Recording session with the data acquisition device positioned in the upper left corner of
the whiteboard

In this paper we describe a system for writer identification using the on-line data
acquired by the eBeam interface. Our system uses Gaussian Mixture Models (GMMs)
as classifiers which are often used in state-of-the-art speaker verification systems [11].
Our system is text-independent, i.e., any text can be used to identify the writer. In [20] a
text-independent system for writer identification is presented. This system uses off-line
data, i.e., only an image of the handwriting, with no time information, is available and
HMM-based recognizers are used as classifiers. There exist other on-line writer iden-
tification and verification systems in the literature [7]. These systems are mainly based
on signature, which makes them text dependent compared to our approach which is text
independent. An approach to writer verification for texts different from signature has
been proposed in [24], but there the transcription has to be made available to the sys-
tem. To compare the results of our proposed system with other work, we use a modified
version of the on-line signature verification system described in [17] as a reference in
our experiments. A modification of the system described in [17] has to be made because
not all features, i.e., pen pressure, can be extracted from the electronic whiteboard data.

The rest of the paper is structured as follows. In Sect. 2 we present two sets of
on-line features for our writer identification system. The Gaussian Mixture Model clas-
sifiers are described in Sect. 3. The results of our experiments are presented in Sect. 4.
Finally, Sect. 5 concludes the paper and proposes future work.

2 Features

The text written on the whiteboard is encoded as a sequence of time-stamped (x, y)-
coordinates. From this sequence, we extract a sequence of feature vectors and use them
to train the classifier. Before feature extraction, some simple preprocessing steps are
applied to remove spurious points and to fill gaps within strokes [9]. In order to preserve
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Fig. 4. Point-based features

writer specific information, no other normalization operations, such as slant or skew
correction, are applied and no resampling of the points is performed. Furthermore, we
do not interpolate missing points if the distance between two successive points of a
stroke exceeds a predefined threshold [6] as this would remove information about the
writing speed of a person.

In this paper we investigate two different approaches for the extraction of the fea-
tures. In the first approach, we extract features directly from the (x, y)-coordinates of the
handwriting (denoted aspoint-basedfeatures). In the second approach, we use strokes
for the calculation of the features (denoted asstroke-basedfeatures). A stroke starts
with a pen-down movement of the pen and ends with the next pen-up movement. Thus
a stroke is a sequence of points during a certain time interval when the pen-tip touches
the whiteboard.

The features extracted in the first approach are similar to the ones used in on-line
handwriting recognition systems [19] and signature verification systems [7]. For a given
strokes consisting of pointsp1 to pn, we compute the following five features for each
consecutive pair of points(pi, pi+1); for an illustration see Fig. 4:

– the lengthli of the line
li = d(pi, pi+1)

– the writing direction atpi, i.e., the cosine and sine ofθi

cos(θi) = ∆x(pi, pi+1)

sin(θi) = ∆y(pi, pi+1)

– the curvature, i.e., the cosine and sine of the angleφi. These angles can be derived
by the following trigonometric formulas:

cos(φi) = cos(θi) ∗ cos(θi+1) + sin(θi) ∗ sin(θi+1)

sin(φi) = cos(θi) ∗ sin(θi+1)− sin(θi) ∗ cos(θi+1)

whereφi = θi+1 − θi (see Fig. 4).
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Fig. 5. Stroke-based features

These five features are computed for all the points of each stroke of a text line. We
thus get a sequence of five-dimensional feature vectors which can be used for classifi-
cation. The lengths of the linesli implicitly encode the writing speed as the sampling
rate of the acquisition hardware is approximately constant.

In the second approach, the extracted feature set is based on strokes. Thesestroke-
basedfeatures have been designed in the context of this work. For each strokes =
p1, . . . , pn we calculate the following eleven features; for an illustration see Fig. 5:

– the accumulated lengthlacc of all linesli

lacc =
n−1∑

i=1

li

– the cosine and the sine of the accumulated angleθacc of the writing directions of
all lines

θacc =
n−1∑

i=1

θi

– the widthw = xmax − xmin and heighth = ymax − ymin of the stroke
– the durationt of the stroke
– the time difference∆tprev to the previous stroke
– the time difference∆tnext to the next stroke
– the total number of pointsn
– the number of changesnchanges in the curvature
– the number of anglesnl of upward writing direction (whereθi > 0)
– the number of anglesns of downward writing direction (whereθi < 0)

The two sets of features presented above provide different information about a per-
son’s handwriting. The point-based feature set contains local information about each
point of the writing. By contrast, strokes consist of sequences of points and provide
rather global information about a handwriting. For example, it is possible to determine
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whether a person’s handwriting is cursive or not from the number of points and changes
in the curvature of a stroke. This information is not available from the point-based fea-
tures.

3 Gaussian Mixture Models

In text-independent speaker recognition, Gaussian Mixture Models (GMMs) have be-
come a dominant approach [11, 16]. In this paper we use GMMs to model the handwrit-
ing of each person of the underlying population. More specifically, the distribution of
feature vectors extracted from a person’s on-line handwriting is modeled by a Gaussian
mixture density. For aD-dimensional feature vector denoted asx, the mixture density
for a given writer is defined as

p(x|λ) =
M∑

i=1

wipi(x).

The density is a weighted linear combination ofM uni-modal Gaussian densities,
pi(x), each parameterized by aD × 1 mean vector,µi, andD ×D covariance matrix,
Ci.

pi(x) =
1

(2π)D/2|Ci|1/2
exp{−1

2
(x− µi)′(Ci)−1(x− µi)}.

The mixture weights,wi, furthermore satisfy the constraint
∑m

i=1 wi = 1. Col-
lectively, the parameters of a writer’s density model are denoted asλ = {wi, µi, Ci},
i = 1, . . . , M . While the general model supports full covariance matrices, only diago-
nal covariance matrices are used in this paper as they perform better than full matrices
in experiments [16].

The following two-step training procedure is used. In the first step, all training data
from all writers is used to train a single, writer independentuniversal background model
(UBM). Maximum likelihood writer model parameters are estimated using the iterative
Expectation-Maximization (EM) algorithm [3]. The EM algorithm iteratively refines
the GMM parameters to monotonically increase the likelihood of the estimated model
for the observed feature vectors.

In the second step, for each writer a writer dependentwriter modelis built by up-
dating the trained parameters in the UBM via adaptation using all the training data
from this writer. We derive the hypothesized writer model by adapting the parameters
of the UBM using the writer’s training data and a form of Bayesian adaptation called
Maximum A Posteriori (MAP)estimation [16]. The basic idea of MAP is to derive the
writer’s model by updating the well-trained parameters in the UBM via adaptation. The
adaptation is a two-step process. The first step is identical to the expectation step of the
EM algorithm, where estimates of the sufficient statistics of the writer’s training data are
computed for each mixture in the UBM. Unlike the second step of the EM algorithm,
for adaptation these new statistical estimates are then combined with the old statistics
from the UBM mixture parameters using a data-dependent mixture coefficient [16].
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Fig. 6. Example of a paragraph of recorded text

The system was implemented using the Torch library [1]. In this implementation,
only the means are adapted during MAP adaptation. Variances and weights are un-
changed, as experimental results tend to show that there are no effects when they are
adapted [16].

4 Experiments and Results

Our experiments are based on the IAM-OnDB database [10], which contains more than
1,700 handwritten texts in on-line format from over 220 writers. During writing on
the whiteboard, the data is acquired using the eBeam system which is also used in the
IDIAP Smart Meeting Room [13]. Each writer writes eight paragraphs of text compiled
from the Lancaster-Oslo/Bergen corpus (LOB) [8]. The acquired data is stored in XML-
format, including the writer’s identity, the transcription and the setting of the recording.

One paragraph of text contains 40 words on average. In Figure 6 an example of a
paragraph of recorded text is shown. Four paragraphs are used for training, two para-
graphs are used to validate the global parameters of the GMMs (see Sect. 3) and the
remaining two paragraphs form the independent test set.

The baseline system [17] uses 32 Gaussian mixture components with diagonal co-
variance matrices. No adaptation is performed and each user model is initialised on
its own data set. The nine point-based features used are(x, y) position, writing path
tangent angleφ, total velocityv, x andy components of velocityvx, vy, total acceler-
ationa, andx andy components of velocityax, ay. Note that the pen pressure feature
which is used in [17] is not available from the whiteboard data. The data is preprocessed
by subtracting the initial point from all samples, so all paragraphs start at(0, 0). Each
feature is then normalized in respect to its mean and its variance.

In our system, all training data from each writer is used to train the UBM. The
background model is then adapted for each writer using all writer-specific training data.
We have increased the numbers of Gaussian from 50 to 400 by steps of 50. In this initial
experiment the adaptation factor was set to 0.0, i.e., full adaptation was performed.
For the other meta parameters we used standard values [1]. The optimal number of
Gaussians was determined on the validation set and this number is then used to compute
the identification rate on the test set. The identification rate is determined by dividing
the number of correctly assigned text paragraphs by the total number of text paragraphs.
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Fig. 7. Identification rate as a function of the number of Gaussians on the validation set

Table 1. Identification rates on the test set (in %)

no. of writers 50 100 150 200

baseline system 94.4 91.4 90.5 85.3
point-based features98.0 92.5 87.0 85.0
stroke-based features100.0100.096.794.75

To examine the scalability of the system, we performed the experiments on four
sets. First, we randomly choose 50 writers that form the setS1. Than we added 50
randomly chosen writers to get the second setS2 (S1 ⊂ S2). We continued adding 50
writers to get setS3 and setS4, respectively (S2 ⊂ S3 ⊂ S4).

In Figure 7 the identification rate as a function of the number of Gaussians mixture
components on the validation set for the 200 writers experiment with the stroke-based
features is shown. On this set, the best identification rate of 96.75% is obtained when
using 150 Gaussians. With this number of Gaussians, an identification rate of 93.5% is
achieved on the test set.

We repeated the experiments with different number of Gaussians and different adap-
tation factors and optimized their values on the validation set. The number of Gaussians
was varied between 50 and 400 by steps of 50. The MAP factor was increased from 0.0
to 0.5 in steps of 0.1. The other meta parameters were again set to standard values. This
optimization further increases the identification rate. Table 1 shows the results on the
test set. The performance of the baseline system [17] is comparable to our system when
point-based features are used. The stroke-based features perform superior to the point-
based features for every number of writers tested. They achieve a perfect identification
rate of 100% for 50 and 100 writers. For 200 writers the identification rate is 94.75%.

To investigate how our system performs if fewer data is used for training, we have
reduced the number of paragraphs from each of the 200 writers from four paragraphs
to one paragraph. The stroked-based features are used in this experiment. The number
of Gaussians was varied between 50 to 150 by steps of 50 and the MAP factor was
increased from 0.0 to 0.5 in steps of 0.1. Both parameters were optimized on the vali-
dation set. The results of our experiments on the test set are given in Table 2. If we use
two instead of four paragraphs of text, the writer identification rate of our system using
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Table 2. Identification rates on the test set using different number of paragraphs (in %)

no. of paragraphs 4 3 2 1

stroke-based features94.7591.7586.2571.25

stroke-based features is still better compared to our system using point-based features
and the baseline system both trained on all four paragraphs of text (see Table 1).

5 Conclusions and Future Work

In this paper we introduced an on-line writer identification system for Smart Meeting
Rooms. A person’s writing on an electronic whiteboard is the input to a Gaussian mix-
ture model based classifier, which returns the identity of the writer. This identity can
then be used for indexing and browsing the recorded data of the meeting.

In our experiments we achieve perfect identification rates of 100% on data sets pro-
duced by 50 and 100 writers. Doubling the number of writers to 200, the identification
rate decreases to 94.75%. This results implies that our approach scales well with a larger
number of writers. Furthermore, we argue that even in large organizations, there will
rarely be more than 200 potential participants to a meeting held in a smart meeting
room.

We have introduced two sets of new features extracted from the recorded on-line
data. The first set consists of feature vectors from each recorded point, while the sec-
ond set consists of vectors extracted from strokes. In our experiments the stroke-based
features perform consistently better than the point-based features. This indicates that
strokes contain more information to characterize a person’s handwriting than single
points.

In future work we plan to test our writer identification system on a refined scenario.
For real world applications it is too time consuming and cumbersome to ask a person
to copy large amounts of text before the system can be adapted with the writer’s data.
Therefore, we intend to further reduce the amount of data which is needed for adapting
the GMMs as well as the amount of data needed to test the system. In the current
scenario, we use the same data from each writer to train the UBM and the client model.
In our future work, we plan to train the UBM with a training set consisting of a disjoint
set of persons.

The point-based and the stroke-based feature sets describe different aspects of a
person’s handwriting. It is reasonable to combine the two sets to get a better perfor-
mance. Initial experiments show promising results. Another approach to increase the
system’s performance is to generate multiple classifier systems by varying the system’s
parameters, e.g., the number of Gaussian components or the adaptation factor.

While our system has been developed for handwriting data acquired by the eBeam
whiteboard system, our approach can potentially also be applied to other on-line hand-
writing data, e.g., data acquired by an electronic pen used on a Tablet PC [21].
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