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Abstract. This work presents a discriminative model for the retrieval of
pictures from text queries. The core idea of this approach is to minimize
a loss directly related to the retrieval performance of the model. For that
purpose, we rely on a ranking loss which has recently been successfully
applied to text retrieval problems. The experiments performed over the
Corel dataset show that our approach compares favorably with generative
models that constitute the state-of-the-art (e.g. our model reaches 21.6%
mean average precision with Blob and SIFT features, compared to 16.7%
for PLSA, the best alternative).

1 Introduction

Several application domains, such as stock photography providers or web search
engines, need tools to search large collections of pictures from text queries.
In most commercial applications, these tools generally rely on some manually-
produced text associated with each picture and then apply text retrieval tech-
niques over such texts. Although effective, this approach has a major drawback:
its human annotation step is a costly process, moreover it often results in in-
complete and subjective annotations. In order to circumvent this limitation,
several automatic annotation techniques have recently been proposed, e.g. [1–
5]. Automatic image annotation is generally performed relying on a generative
model that aims at estimating the distribution of words given any picture from
a training set of annotated images. Such models include, for instance, Cross-
Media Relevance Models (CMRM) [3], Latent Dirichlet Allocation (LDA) [5] or
Probabilistic Latent Semantic Analysis (PLSA) [6].

In this paper, we introduce an alternative to these approaches. The proposed
model, Passive-Aggressive Model for Image Retrieval (PAMIR), relies on dis-
criminative learning. This means that the model parameters are not selected to
maximize the likelihood of some annotated training data; they are instead se-
lected to maximize the retrieval performance of the model over a set of training
queries. This has several advantages when compared to generative approaches:
from a theoretical point of view, it is attractive to solve the targeted problem di-
rectly instead of solving the more complex problem of data generation [7]. From
a practical point of view, discriminative methods have been highly successful



in several domains and our experiments also confirm this advantage (for single
word queries, PAMIR attains 30.7% mean average precision with Blob+SIFT
features compared to 24.5% for the second best model, PLSA).

The remainder of this paper is organized as follows: Section 2 introduces
our approach, Section 3 presents the features used to represent text queries and
images, Section 4 briefly describes previous related research. Section 5 reports
the experiments and results. Finally, Section 6 draws some conclusions.

2 Passive-Aggressive Model for Image Retrieval

In this section, we first define the ideal goal that an image retrieval model F is
targeting, which allows us to define a training loss L related to this objective.
Then, we introduce the parameterization of our model Fw and we explain the
optimization procedure adopted to select the parameters w∗ that minimize L
over a given training set Dtrain.

2.1 Ranking Loss

Before introducing the ranking loss, we should first recall the ideal goal of an
image retrieval system. Given a set of pictures P and a query q, such a system
should rank the pictures of P such that the pictures relevant to q appear above
the non-relevant ones. In order to address such a problem, a scoring function
F that assigns a real value F (q, p) to any query/picture pair (q, p) is generally
introduced [8]. Given a query q, a retrieval system then simply computes the
scores {F (q, p), ∀p ∈ P} and ranks the pictures of P by decreasing scores. The
effectiveness of such a system is hence mainly determined by the choice of an
appropriate function F . In fact, optimal retrieval performance would be achieved
if F satisfies

∀q, ∀p+ ∈ R(q), ∀p− /∈ R(q), F (q, p+) > F (q, p−), (1)

where R(q) refers to the pictures of P which are relevant to q. In other words, if
F satisfies (1), the retrieval system will always rank the relevant pictures above
the non-relevant ones.

Hence, our learning problem is to identify a function F which is likely to
satisfy (1) for any unseen queries and pictures, given only a limited amount of
training data Dtrain. For that purpose, we need a loss function L such that the
selection of a function F minimizing F → L(F ; Dtrain) ensures that F also yield
good retrieval performance over unseen data. In fact, such a loss has recently
been introduced in the text retrieval literature [9, 10] and we propose to apply it
to our image retrieval problem. This loss, referred to as the ranking loss in the
following, assumes that we are given a set of training triplets,

Dtrain = ((q1, p
+
1 , p−1 ), . . . , (qn, p+

n , p−n ),



where, for all k, p+

k is a picture relevant to query qk and p−k is a picture non-
relevant to query qk, and is defined as follows:

L(F ; Dtrain) =

n
∑

k=1

l(F ; qk, p+

k , p−k )

=

n
∑

k=1

max(0, 1 − F (qk, p+

k ) + F (qk, p−k )).

This means that minimizing L favors the selection of functions F such that, for
all k, the score F (qk, p+

k ) is greater than F (qk, p−k ) by at least a margin of 1 (the
choice of 1 is arbitrary here and any positive constant would lead to the same
optimization problem). This notion of margin is a key aspect of this criterion and
has shown to yield good generalization performance when applied over different
text retrieval tasks [9, 10].

2.2 Model Parameterization

In this section, we describe a family of parameterized functions Fw that are
suitable for our task. This parameterization is inspired from text retrieval, i.e.
the retrieval of text documents from text queries. In this case, documents and
queries are generally represented with bag-of-words vectors, i.e. each text item t is
assigned a vocabulary-sized vector in which the ith component is a weight related
to the presence or absence of term i in t (see Section 3 for a detailed description).
Each query/document pair (q, d) is then assigned a score corresponding to the
inner product of their vector representation [8], i.e.

F text(q, d) = q · d =

T
∑

i=1

qi · di,

where T is the vocabulary size.
In our case, we adopt a similar approach and we compute the score of a

picture/query pair (q, p) according to:

Fw(q, p) = F text(q, fw(p)) (2)

where fw is a linear mapping from the picture space P to the text space T = R
T .

In other words, fw is defined as,

∀p ∈ P , fw(p) = (w1 · p, . . . , wT · p)

where w = (w1, . . . , wT ) ∈ PT .

2.3 Passive-Aggressive Loss Minimization

As mentioned above, our goal is to identify the parameters w∗ that minimizes
w → L(Fw; Dtrain). For that purpose, we rely on the Passive-Aggressive min-



imization algorithm3 [11]. This algorithm iteratively constructs a sequence of
weights w0, . . . , wm according to the following procedure: the first vector is set
to be zero (w0 = 0) and, at any iteration i > 0, we select the weight wi as a
trade-off between remaining close from the previous weight wi−1 and satisfying
the ith training constraint,

wi = argmin
w

‖w − wi−1‖2 + C · l(Fw; qi, p
+

i , p−i ). (3)

where C is the aggressiveness hyperparameter that controls this trade-off. This
problem (3) can then be solved analytically [11], leading to:

wi = wi−1 + τivi, where τi = min

{

C,
l(wi−1; (qi, p

+

i , p−i ))

‖vi‖2

}

and vi = −(q1(p
+

k − p−k ), . . . , qT (p+

k − p−k )).

After the last training iteration m, the best weight w∗ is selected among w0, . . . , wm

according to some validation data Dvalid: w∗ = arg minw∈{w0,...,wm} L(Fw; Dvalid).
The two hyperparameters, i.e. the aggressiveness C and the number of iterations
m, are selected by cross-validation.

3 Text and Visual Features

This section describes the features used to represent text queries and pictures.

3.1 Text Features

The queries are represented with bag-of-words vectors, i.e. each query q is rep-
resented with a vocabulary sized vector,

q = (q1, . . . , qT ),

where qi is the weight of term i in q and T is the vocabulary size. Each term
weight qi is assigned according to the normalized tf idf weighting, i.e.

qi =
tfi,q · idfi

√

∑T

j=1
(tfj,q · idfj)2

where tfi,q refers to the number of occurrences of i in q and idfi = −log(ri), ri

being the fraction of training captions in which i occurs.

3 The proof that the Passive-Aggressive algorithm actually minimizes the
loss L(Fw; Dtrain) is not reported here due to space limitation but can be easily
infered from [11].



3.2 Visual Features

Similarly to previous work, e.g. [1, 6], we adopt a bag-of-visterms representation
for pictures. In this framework, the representation of a picture p is assigned
according to a 4-step process. In a first step, salient regions of p are detected.
Then, each region is described with a feature vector. Each of these feature vectors
is then mapped to a single discrete value according to a codebook (in general,
this codebook is built through k-means clustering of the set of feature vectors
extracted from all training images). The picture p is then represented as an
histogram over the codebook, i.e.

p = (vtfp,1, . . . , vtfp,V ), (4)

where V is the codebook size and vtfp,i is the number of regions in p whose
vector is mapped to the ith codebook value.

In our case, we use two alternative types of visterm representation, i.e. Blob
and Scale Invariant Feature Transform:

Blobs are based on the visual properties of large color-uniform regions. In this
case, the salient regions are detected through a normalized cut algorithm,
each region is then described by a 36-dimensional vector describing colors
(18), texture (12) and shape/location (6). Region quantization is then per-
formed according to the k-means clustering of the training regions. More
details about these features can be found in [1].

SIFTs are based on the distribution of edges in regions located around salient
points of the image. In this case, the salient regions are detected with a
Difference-of-Gaussians detector, and each region is then described accord-
ing to a 128-bin edge histogram. Like for Blobs, region quantization is also
performed according to the k-means clustering of training regions. More de-
tails about these features can be found in [12].

SIFTs and Blobs have also been used jointly in our experiments. In this case,
a single histogram per picture is obtained by concatenating the Blob and
SIFT histograms.

Like for text representation, we do not use the vtf vector (4) directly, we instead
use a representation similar to the normalized tf idf weighting4, i.e.

pi =
vtfi,p · vidfi

√

∑V

j=1
(vtfj,q · vidfj)2

,

where vidfi = −log(vri), vri referring to the fraction of training regions mapped
to the ith codebook vector.

4 Due to space limitation, we do not report the preliminary experiments over valida-
tion data highlighting the advantage of this weighting strategy over standard vtf

histograms.



4 Related Work

Most of the previous work in image retrieval from text queries focussed on an
intermediate step, image auto-captioning, the underlying idea being to apply
text retrieval techniques over the automatically inferred captions. The goal of
such approaches is hence not to optimize directly a criterion related to retrieval
performance but to find the most probable caption given a picture. In this con-
text, several models have been introduced in the last decade and the following
describes three of them: we present Cross-Media Relevance Model (CMRM) [3],
Cross-Media Translation Table (CMTT) [4] and Probabilistic Latent Semantic
Analysis (PLSA) [6]. Other models, such as Latent Dirichlet Analysis [5] or Hier-
archical Mixture Model [2], could also have been present in this section. However,
due to space constraints, we decided to focus on the models that have shown to
be the most effective over the benchmark Corel dataset [1].

4.1 Cross-Media Relevance Model

The core idea of CMRM [3] is to estimate the joint probability of a term t and
a test picture ptest as its expectation over the training pictures,

P (t, ptest) =
∑

ptrain∈Dtrain

P (ptrain) · P (t, ptest|ptrain).

The image ptest is considered as a set of discrete features or visterms (see Sec-
tion 3), i.e. ptest = {v1, . . . , vm}, which means that:

P (t, ptest) =
∑

ptrain∈Dtrain

P (ptrain) · P (t, v1, . . . , vm|ptrain).

Terms and visterms are then assumed to be independent given a training image,
leading to:

P (t, ptest) =
∑

ptrain∈Dtrain

P (ptrain) · P (t|ptrain)

m
∏

i=1

P (vi|p
train) (5)

The probability P (ptrain) is then assumed to be uniform over Dtrain, while
P (t|ptrain) and P (vi|p

train) are estimated through maximum likelihood with
Jelinek-Mercer smoothing [3]. The probability p(t|ptest) is then simply inferred
from (5) using Bayes rule. Although simple, this method has shown to yield good
performance over the standard Corel dataset [3].

4.2 Cross-Media Translation Table

The CMTT approach is inspired from cross-lingual retrieval techniques [4]. Given
a term t and a picture ptest, CMTT estimates p(t|ptest) according to a translation



table, containing the similarities sim(t, v) between any textual term t and any
visterm v:

p(t|ptest) =
wt,ptest

∑T

i=1
wi,ptest

, where wt,ptest
=

m
∑

i=1

sim(t, vi),

v1, . . . , vm being the visterms of ptest. The translation table is built from the
training set Dtrain according to the following methodology: in a first step, each
term t and each visterm v is represented by a |Dtrain| dimensional vector in
which each component i is the tf · idf weight of term t (or visterm v) in the
ith training example. The vectors of all terms and visterms are then repre-
sented as a matrix, M = [t1, . . . , tT , v1, . . . , vk], and Singular Value Decompo-
sition (SVD) is then applied over this matrix as a noise removal step, yielding
M ′ = [t′1, . . . , t

′
T , v′1, . . . , v

′
k]. The similarities between a visterm v and a term t

are then computed according to:

∀i, j, sim(ti, vj) =
cos(t′i, v

′
j)

∑V

k=1
cos(t′i, v

′
k)

.

CMTT has been successfully applied to the Corel data. In particular, the appli-
cation of SVD has shown to improve noise robustness. However, cosine similarity
only allows to model simple term/visterm relationships. This limitation has been
circumvented with the introduction of more complex models, like PLSA.

4.3 Probabilistic Latent Semantic Analysis

PLSA, initially introduced for text retrieval [13], has recently been applied to
image retrieval problems [6]. This model assumes that the observation of a pic-
ture p and a term t are independent conditionally to a discrete latent variable
zk = {z1, . . . , zK},

P (p, t) = P (p)

K
∑

k=1

P (zk|p)P (t|zk),

where K is a hyperparameter of the model. A similar conditional independence
assumption is also made for visterms,

P (p, v) = P (p)
K

∑

k=1

P (zk|p)P (v|zk).

In this framework, the different parameters of the model, i.e. P (zk|p), P (t|zk), P (v|zk)
are trained through the Expectation Maximization (EM) algorithm. In fact, a
modified version of EM is applied such that the latent space is constrained
toward the text modality. This yields a latent space that better models the se-
mantic relationships between pictures, which has shown to be more effective
empirically [6].



Table 1. Picture Set Statistics.

Ptrain Pvalid Ptest

Number of pictures 4,000 500 500

Number of Blob clusters 500
Avg. # of Blobs per pic. 9.43 9.33 9.37

Number of SIFT clusters 1,000
Avg. # of SIFTs per pic. 232.8 226.3 229.5

Table 2. Query Set Statistics.

Qtrain Qvalid Qtest

Number of queries 7,221 1,962 2,241
Avg. # of rel. pic. per q. 5.33 2.44 2.37

Vocabulary size 179
Avg. # of words per query 2.78 2.51 2.51

5 Experiments and Results

In this section, we first present the experimental setup and then discuss the
results.

5.1 Experimental Setup

The experiments presented in this section have been performed over the Corel

dataset, following the setup introduced in [1]. This dataset consists of 5, 000
captioned images which are split into 4, 500 development images and 500 test
images. The image captions are manual annotations, based on a vocabulary of
179 words.

As a feature extraction step, we extracted Blob and SIFT visterms relying
on a codebook built through k-means clustering of the development pictures
(see Section 3). For PAMIR training, we split the development set into a 4, 000
image train set (L(Fw, Dtrain) is minimized over this set, see Section 2) and
a 500 image validation set (the number of iterations m and the aggressiveness
parameter C are selected relying on this set). Since no retrieval queries were
available as such for this Corel data, we used as queries all subsets of the 179
words which have at least one relevant image according to the following rule:
“a picture p is considered as relevant to a query q if and only if the caption of
p contains all the words in q”. Such queries have already been used in previous
work, e.g. [3, 14]. Table 1 and Table 2 summarize image and query set statistics.

In order to assess PAMIR effectiveness, we used mean average precision
(mAP), the standard evaluation measure in Information Retrieval benchmarks [8].
For any query, average precision is defined as the average of the precision (i.e.
the percentage of relevant pictures) measured at each ranking position where a
relevant picture appears and mAP corresponds to the mean of average precision



Table 3. Mean average precision (%) for test queries.

CMRM CMTT PLSA PAMIR

Blobs 10.4 11.8 9.7 11.9
SIFTs 10.8 9.1 12.3 16.0

Blobs + SIFTs 14.7 11.5 16.7 21.6

over the Qtest set. For the sake of comparison, we also report the performance
of CMRM, CMTT and PLSA that we trained and evaluated according to the
same setup.

5.2 Overall Performance

Table 3 reports the mean average precision for the CMRM, CMTT, PLSA and
PAMIR models when Blobs, SIFTs and their combined representation are used.
The PAMIR model achieves the best retrieval performance for the three im-
age representations, with a significant improvement according to the Wilcoxon
signed-rank test at 95% confidence over the three other models for SIFTs and
Blobs+SIFTs (this outcome is indicated by bold values in the tables). Although
it does not contain any color information, the SIFT representation leads to a
more accurate ranking of the test images for the PLSA and PAMIR models
than the Blob representation (27% and 34% relative improvement respectively).
This might be explained considering the difference between the two representa-
tions, which not only relies in the region descriptors, but also in the number,
and the size of the considered regions (see Section 3). While the Blobs represen-
tation only consists of a maximum of ten regions, the average number of regions
sampled per image with the Difference of Gaussians point detector is around 230
in our dataset. The SIFT representation therefore presents richer statistics than
the Blob representation, and these statistics seems better exploited by PLSA
and PAMIR.

The two representations are complementary, and their combination inter-
estingly achieves a higher score than the Blob or SIFT representation individ-
ually for the CMRM, PLSA, and PAMIR models. The relative improvement
of Blobs+SIFTs over SIFTs is 41% for the CMRM model, 36% for the PLSA
model, and 35% for the PAMIR model. Only CMTT fails to take advantage of
the combination, and achieves a similar performance with the Blobs+SIFTs and
Blobs. The poor performance of CMTT model over SIFTs might explain the
difference. The PAMIR model does take the best benefit of the combined repre-
sentation, and outperforms the second best model, PLSA, with a 29% relative
improvement. These results justify the combination of a small set of large, color-
based regions (Blobs) with a larger set of small, texture-based regions (SIFTs)
to represent an image.

A majority of studies [1, 6, 4, 2] evaluates the retrieval performance based on
single-word queries. We therefore compare the four models using the three image
representations for the subset of single-word queries in Table 4. On this set of



Table 4. Mean average precision (%) over single-word test queries.

CMRM CMTT PLSA PAMIR

Blobs 14.2 17.2 15.5 16.6
SIFTs 14.2 15.1 17.1 23.8

Blobs + SIFTs 19.2 19.1 24.5 30.7

single-word queries, the CMTT model achieves the best performance when the
Blob representation is used, and the PAMIR model performs the best image
ranking for the SIFT and Blob+SIFT representation. The relative increase in
performance with respect to PLSA, the second best model, is 39% and 25% for
SIFTs and Blobs+SIFTs respectively.

Comparing Tables 3 and 4, one should remark that the performance is higher
for single-word queries. This result can be explained by the number of relevant
pictures per query. The subset of 179 single-word queries has a higher average
number of relevant images (9.4) than the set of all 2, 241 queries (2.4). This means
that these queries correspond to an easier retrieval problem [8], that naturally
results in higher mean average precision values. Moreover, the words appearing
in queries with many relevant pictures occur more frequently in the training data,
allowing the model to achieve better generalization performance. The influence
of the number of relevant images on PAMIR results is shown in Table 5. The
single-word queries are divided into three sets, defined by the number of relevant
images per query. The mean of the average precision of the queries within each
range indicates that the average precision is higher for queries with more relevant
documents, which confirms the above explanation.

We showed that the PAMIR model takes the best advantage of the Blobs+SIFTs
combination, outperforming the PLSA-based generative model and other ap-
proaches significantly. The good performance of the PAMIR model justifies the
use of a ranking-based criterion for retrieval applications.

5.3 Per-query Performance

The mean average precision measure summarizes the overall retrieval perfor-
mance of a model in a single number, but does not indicate the per-query perfor-
mance. To have a more complete evaluation, we compare the average precision of
each single-word query obtained with the PAMIR model over the different types

Table 5. Mean average precision (mAP) in percent obtained with PAMIR for
Blobs+SIFTs for three sets of single-word queries defined by the number of relevant
images.

query range # queries mAP (%)

0 < #rel.pic. ≤ 2 47 15.5
2 < #rel.pic. ≤ 7 69 26.7
7 < #rel.pic. 63 46.5
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Fig. 1. Histogram of the relative increase of the average precision of single-word queries
between the SIFTs and Blobs representations. The words corresponding to each bin
are shown on the right.

of image representation. We also propose to compare the results of PAMIR and
PLSA, the second best model, on a per-query basis.

Figure 1 shows the relative increase in performance between SIFT and Blob
representations. The histogram shows five ranges of relative improvement, with
the corresponding queries on the right. In this figure, we consider only the queries
that correspond to a minimum of 10% of average precision for one of the two rep-
resentations in order to avoid unreliable measurements of relative improvement.
Among the 124 resulting single-word queries, 65 are improved by more than 30%
when SIFTs instead of Blobs are used. For instance, for queries like house, town,
street, city, arch, buildings, window, and bridge, images are ranked with a higher
average precision when represented with SIFTs instead of Blobs features. As
these concepts naturally correspond to local edge structures, it seems consistent
that SIFTs better capture the corresponding image content. It is more surprising
that the average precision of single-word queries like ocean or black is improved
by more than 30% when SIFTs instead of Blobs features are used. The opposite
trend is also observed with other queries, for which the PAMIR model achieves
a higher score with the Blob representation. For 28 queries, the relative gain ob-
tained by using Blobs instead of SIFTs is over 30%. The ranking of color-based
concepts like sun, ice, night, and garden is learned with a higher accuracy by
the PAMIR model when images are depicted with Blobs rather than SIFT fea-
tures, which seems consistent. The fact that the queries temple and restaurant

are improved when Blobs instead of SIFTs are used is less intuitive.
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Fig. 2. Histogram of the relative increase of the average precision of single-word queries
obtained with the Blobs+SIFTs representation and the best average precision achieved
with the Blobs and SIFTs representations. The words corresponding to each bin are
shown on the right.

As shown in Tables 3 and 4, the combination of the two representations im-
proves the retrieval performance of the PAMIR model for all queries on average.
To have an indication of the difference in performance at query level, Figure 2
shows the histogram of the relative improvement in average precision obtained
with the Blobs+SIFTs over the best average precision obtained between Blobs
and SIFTs individually. Note that this second performance is only theoretical,
given that the best representation is chosen on the test data for each query. As
for Table 1, only single-word queries resulting in a 10% minimum average preci-
sion with one of the two representations are considered. While 42 out of the 129
considered queries do not significantly benefit from the combined representation,
with a relative difference between 10% and −10%, the average precision of 66
words is improved by more than 10% when Blobs+SIFTs is used. Moreover,
the increase is over 30% for 35 single-word queries. The words ocean and black,
that were surprisingly better represented by SIFT instead of Blob features (see
Table 1), achieve a higher average precision when the SIFTs representation is
completed with the Blobs features. This confirms the intuition that these specific
queries should benefit from some color-based visual information. Although the
best representation between SIFTs and Blobs has been selected a-posteriori for
this evaluation, only 21 queries suffer a performance loss greater than 10% when
using the combination instead of this unrealistic individual feature setup. This
result hence highlights the complementarity of Blob and SIFT representation.
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Fig. 3. Histogram of the relative increase of the average precision of single-word queries
between the PAMIR and the PLSA model, using the Blobs+SIFTs representation.The
words corresponding to each bin are shown on the right.

Keeping this combined feature setup, we propose to compare the performance
of PAMIR with the best alternative, PLSA, on a per-query basis to have a deeper
understanding of the difference between both models. Figure 3 shows the relative
improvement in average precision for single-word queries between the PAMIR
and the PLSA models, for the Blobs+SIFTs representation. Like for the above
histograms, only the queries with a minimum average precision of 10% for one
of the two models are considered to prevent unreliable measurements of relative
improvement. This leads to 127 queries. Out of these, the ranking of 70 queries
is improved by more than 10% when PAMIR instead of PLSA is used, while 26
queries only are better ranked by PLSA by more than 10%. The PAMIR model
improves the ranking of 53 queries by more than 30% relative improvement. This
further confirms the result of the Wilcoxon signed-rank test which concluded that
PAMIR advantage is consistent over the query set. An illustration of the rankings
obtained by PLSA and PAMIR is shown in Figure 4 for the queries pillar and
landscape, which are respectively improved by more than 10% and 30% by the
PAMIR model. Note that only the first five top-ranked images are shown, which
does not necessarily reflect the whole ranking performance measured by the
average precision measure. For the pillar query, both models retrieve relevant
images in the top-five, except for the last image retrieved by PLSA. The second
query shows the case where the ranking obtained by the PAMIR model is clearly
better for the top-five images. The first two and the fourth images retrieved
by PLSA are not related to the landscape concept, while only the fourth image
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Fig. 4. First five images retrieved with the PLSA and the PAMIR models for the
queries pillar and landscape.

retrieved by the PAMIR model is not a landscape image. These examples confirm
the advantage of PAMIR over PLSA, showing the practical benefit of using a
learning procedure appropriate to the image retrieval problem.

6 Conclusions

In this work, a discriminative model for the retrieval of pictures from text queries
has been proposed. This model relies on the recently proposed Passive-Aggressive
algorithm for training [11] and its parameters are selected to minimize a loss re-
lated to the ranking performance over a set of training queries. The choice of
such a loss is motivated by recent work in the context of text retrieval [9, 10].
The experiments performed over the Corel dataset show that the advantage of
discriminative approaches observed for text data translates to image retrieval:
the proposed model PAMIR is reported to yield significantly better results than
generative models that consistitute the state-of-the-art (e.g. PAMIR mean av-
erage precision is 21.6% when Blob and SIFT features are used, compared to
16.7% for PLSA, the second best model).

These results are promising and this work yield several possible future re-
search directions. For instance, other parameterization could be investigated: as



any passive-aggressive algorithm [11], the PAMIR model could rely on non-linear
kernels, allowing the application of kernels which avoid the feature quantification
step, such as [15]. Another extension of this work would be to modify PAMIR
such that it could be applied over much larger datasets, where the application
of any learning procedure, generative or discriminative, is challenging.
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