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SUMMARY

Low-dose electron microscopy of cryo-preserved in-
dividual biomolecules (single-particle cryo-EM) is a
powerful tool for obtaining information about the
structure and dynamics of large macromolecular
assemblies. Acquiring images with low dose reduces
radiation damage, preserves atomic structural de-
tails, but results in low signal-to-noise ratio of the
individual images. The projection directions of the
two-dimensional images are random and unknown.
The grand challenge is to achieve the precise three-
dimensional (3D) alignment of many (tens of thou-
sands to millions) noisy projection images, which
may then be combined to obtain a faithful 3D map.
An accurate initial 3D model is critical for obtaining
the precise 3D alignment required for high-resolution
(<10 Å) map reconstruction. We report a method
(PRIME) that, in a single step and without prior struc-
tural knowledge, can generate an accurate initial 3D
map directly from the noisy images.
INTRODUCTION

Understanding molecular mechanisms of biologica macromole-

cules requires structural information at the highest possible res-

olution. The transmission electron microscope is a powerful tool

for obtaining information about the structure and dynamics of

large macromolecular assemblies (molecular weight of 200

kDa to 70 MDa) at intermediate to atomic resolution (3–30 Å;

Fischer et al., 2010; Frank, 2006; Ludtke et al., 2004; van Heel

et al., 2000; Wiedenheft et al., 2011).

In single-particle cryo-EM, a solution of biologic molecules is

frozen (Adrian et al., 1984) and imaged with a low electron

dose (5–15 electrons/Å2). This reduces radiation damage

(Knapek and Dubochet, 1980; Unwin and Henderson, 1975),

preserves the atomic structures, but compromises the signal-

to-noise ratio (SNR) of the individual two-dimensional (2D)

projection images. Production of a good initial three-dimensional

(3D) model ab initio from noisy images is difficult, and therefore,

many high-quality cryo-EM maps are generated by alignment

to initial 3D models obtained by crystallography (Fischer

et al., 2010; Rosenthal and Henderson, 2003; Scheres, 2012b;
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Scheres et al., 2007a; Zhang et al., 2008) or small-angle X-ray

scattering (Wiedenheft et al., 2011).

Standard single-particle reconstruction methodologies in-

volve multiple steps, including grouping of images based on

similarity, generation of averages with improved SNR, calcula-

tion of an initial low-resolution 3D model, and map refinement

by repeated cycles of individual particle image alignment and

volume reconstruction (Baker et al., 2010; Elmlund et al., 2010;

Elmlund and Elmlund, 2012; Frank, 2006; Hohn et al., 2007;

Ludtke et al., 1999; Scheres et al., 2008; Shaikh et al., 2008;

Tang et al., 2007; van Heel et al., 1996). If the initial model

does not faithfully represent the imaged molecule, the final

map may be biased toward an incorrect result (Elmlund, 2010).

The use of randomized orientations as a starting point for 3D

alignment has been a routine procedure for icosahedral virus

reconstruction for more than a decade. More recently, it was

proposed as an objective approach to single-particle recon-

struction of asymmetrical molecules (Sanz-Garcı́a et al., 2010;

Yan et al., 2007). The initial model is projected into 2D reference

images in uniformly distributed orientations. The orientations of

the experimental images are determined based on matching to

the reference images. The approach is deterministic in that the

highest scoring—although not necessarily correct, owing to

low SNR and poor model quality—orientation is assigned to

each image. A new volume is calculated and the process is

repeated until convergence. This approach requires extensive

restarting from different random seeds. Because an erroneous

map cannot be distinguished from a correct one when the struc-

ture is unknown, external validation (Henderson et al., 2011) is

required.

‘‘Weighted’’ orientation assignment has been shown to

overcome bias introduced by a starting model that does not

faithfully represent the images when applied to 2D alignment

via maximum likelihood estimation (ML; Sigworth, 1998). The

improved search behavior of ML algorithms is explained by the

reduced capacity of the statistical model. Capacity refers to

the size of the set of functions that the statistical model (the

reconstruction) can be tuned to represent. Three-dimensional

ML approaches, inspired by Sigworth’s pioneering work, apply

continuous probability distribution estimation to determine the

distribution of orientations (Scheres, 2012a; Scheres et al.,

2005, 2007a, 2007b). ‘‘Weighted’’ orientation assignment can

be viewed asmeans for exploiting the angular information redun-

dancy of the 3D Fourier transform at low resolution. Exploiting

this redundancy alone, however, is not sufficient to accomplish

ab initio 3D reconstruction in our hands—the search behavior
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Figure 1. Schematic Representation of the

Image Processing Workflow

(A) Individual ribosome cryo-EM images.

(B) The workflow of standard single-particle image

processing: (1) grouping of images based on

similarity and generation of averages with

improved SNR, (2) generation of a preliminary low-

resolution model, and (3) map refinement by

repeated cycles of individual particle image

alignment and volume reconstruction.

(C) The workflow of our approach: (1) generation of

an accurate 3D representation of the imaged

molecule in a single optimization step.

(D) Schematic representation of probabilistic

versus deterministic image alignment for one

single particle image. The radial lines represent 3D

orientations in the discrete search space. Our

probabilistic alignment assigns each particle

image to a range of high-scoring orientations with

weights. Sampling a weight distribution for all

orientations that improve the correlation with

randomly positioned delta functions generates

sparse orientation weights during search. Deter-

ministic image alignment assigns each particle

image a single orientation, assumed to be the

correct one.
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of the algorithm must be improved as well. The 3D ML

approaches developed have not been shown to converge

without the use of an accurate initial 3D model (Scheres,

2012b; Scheres et al., 2007a).

We report a probabilistic initial 3D model generation proce-

dure for single-particle cryo-EM (PRIME) that, in a single step

and without prior structural knowledge, can generate an accu-

rate initial 3D map directly from EM images. In all tested cases,

the procedure converges to the correct map whether a 3D

reconstruction of an unrelated molecule, a random model, or

random noise is used for initialization.

Methods
Our image processing workflow is illustrated schematically and

compared with a typical single-particle reconstruction protocol

in Figure 1. The initial random model is projected into 2D

images in evenly distributed orientations and correlations

between each particle image and the reference images are

calculated. Standard methods assign the single highest scoring

orientation to each image. In contrast, our method assigns a

range of high-scoring orientations (Figure 1D), the contribution

of each image to the 3D reconstruction being determined by

weight factors that are proportional to the correlation. The

alignment of each image is based on the average of many

likely alignments. Multiple copies of the same image are

included in the 3D reconstruction by sampling all orientations

that improve the correlation and assigning them different

weights. Thus, the 3D reconstruction becomes a weighted
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average of the images assigned to

each orientation. The computational de-

mands of one iteration of our procedure

correspond (on average) to about one

iteration of standard deterministic 3D
alignment (Baker et al., 2010; Frank et al., 1996; Harauz and

Ottensmeyer, 1984; Ludtke et al., 1999; Penczek et al., 1994;

Radermacher, 1994; Sanz-Garcı́a et al., 2010; Shaikh et al.,

2008; van Heel et al., 1996).

Probabilistic Orientation Search
Define a configuration S

S= ðfj1; q1;41g1;.; fjn; qn;4ngnÞ˛U (Equation 1)

of the 3n rotational variables of the optimization problem, where

n is the number of images. The origin shift parameters are not

included in the formalism for clarity. The search spaceU consists

of all possible orientations and all possible combinations of ori-

entations for the n images.

We use stochastic hill climbing to explore the search space U

and find the alignment that gives the best 3Dmodel, as judged by

the global score given by Equation 4 below. For the data sets of

5,000 images analyzed here (see Results) this corresponds to a

search of more than 25,000 parameters. While basic hill climbing

always chooses the steepest uphill move, stochastic hill climbing

randomly selects among the possible uphill moves (Russel and

Norvig, 2003). This reduces the tendency to get trapped in

local optima due to greedy acceptance of neighboring moves.

The stochastic search introduces large fluctuations capable of

rearranging major parts of a system. A neighborhood G(S)

maps S to S
0

S/S0˛GðSÞ (Equation 2)
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to facilitate local search. The neighborhood G(S) is defined by

keeping all but the i:th particle image orientation fixed and vary-

ing the orientation of the i:th particle image (one-exchange

neighborhood). Stochastic hill climbing scans the search space

by sequentially updating a single configuration S. The global

score (Equation 4, below) is a weighted average of individual

scores li. An individual score li is defined as the correlation

between the i:th image and a projection of the reconstruction

in orientation {ji, qi, fi}. The correlation li is calculated in real

space, assuming statistically normalized images (zero pixel

average and unit variance)

li =

Znpix

1

dj
�
X

ðiÞ
j Y

ðkÞ
j

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZnpix

1

dj
�
X

ðiÞ
j

�2
Znpix

1

dj
�
Y

ðkÞ
j

�2

vuuut
; (Equation 3)

where X(i) is the i:th particle image, Y(k) is the k:th reference image,

and npix is the number of pixels in the polar image representation.

For clarity, consider only the 3D rotational variables of the

alignment problem. Our optimization algorithm maximizes the

goal function g

g=

Zn

1

di

Zp

1

dj

Z2p

0

dqlqijw
q
ij ; (Equation 4)

where p is the number of projection directions, lqij denotes the

cross-correlation coefficient (Equation 3) between the i:th parti-

cle image and the j:th reference image for in-plane rotation q,

and wq
ij denotes the strength of association (weight) between

particle i and orientation j,q. We are looking for the n distributions

of orientation weights that maximize g so that most weights are

zero (sparse distribution). Determination of the number of

nonzero weights is based on the selected resolution limit, the

molecular radius, and the angular resolution of the discrete 3D

orientation search space (as described below).

The reconstruction algorithm is resolution-limited using a low-

pass filter with a cosine tapering edge. A subset of high-scoring

(feasible) orientations Ri is defined and its size r is equal to the

number of orientations per particle image included in the weight-

ing scheme. The size of the feasible subset of orientations r is

defined based on the low-pass limit llp (in angstroms) by calcu-

lating the average number of projection directions within d ra-

dians from any projection direction of the search space, where

d = arctan

�
llp
rmol

�
(Equation 5)

and rmol is the molecular radius (in angstroms). The size of the

feasible subset of orientations r decreases with increasing low-

pass limit resolution and increasing molecular radius. The pro-

cess is initialized with a random model—a spherical density

with a radius approximately equal to the particle radius. The pro-

jection directions of the discrete search space are generated by

taking a spiraling path on the unit sphere to generate p orienta-

tions (Saff and Kuijlaars, 1997). The reference images are gener-

ated by low-pass filtering the current reconstruction, projecting

it, and transforming the resulting projection images into polar co-
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ordinates (Cong et al., 2003; Penczek et al., 1994; Radermacher,

1994). The i:th particle image is low-pass filtered, shifted over a

discrete grid of translations, and transformed into polar coordi-

nates. In-plane transformations of the i:th particle image are

definedwith respect to reference images by searching the neigh-

borhood GðSÞ (projection matching).

As described above, lqij denotes the cross-correlation between

the i:th particle image and the j:th reference image for in-plane

rotation q. A subset Qi˛U of feasible orientations is defined

by requiring lqijRli;best. Selecting r orientations that satisfy

lqijRli;best from Qi ˛U for inclusion in the weighting scheme

searches in-plane rotations and projection directions. Feasible

orientations are selected hierarchically. First, r projection direc-

tions are selected randomly (using the highest scoring in-plane

rotation for each projection direction). Next, one in-plane rotation

per projection direction is selected randomly from the set of in-

plane rotations that improve the correlation. In summary, new

feasible orientations are accepted with a probability determined

by the uniform distribution over all orientations that improve the

correlation. If no orientations improve the correlation, the r high-

est scoring orientations are included in the weighting scheme.

The indeterminism of the correlation function defines a probabi-

listic rule for moving from the current alignment to the new

neighbor. Alignments that are more robust toward uncertainties

in the reconstruction are found by modeling this uncertainty in

the set of ‘‘acceptable’’ alignments. Probabilistic orientation

assignment accounts for the large errors in the goal function

landscape introduced by noise. The i:th particle image’s feasible

subset of orientations is denoted Ri3Qi. Our weighting scheme

is independent of any image formation model or assumption of

noise statistics. An alignment S is now defined in a search space

of orientation weights, where every particle image is assigned

one weight factor per discrete orientation. The correlation values

in the feasible subset are normalized to the interval [0,1] to allow

better discrimination between the orientations

hq
ij =

expfðlqij � lminÞ=Dlg � 1

expð1Þ � 1
; (Equation 6)

where lmin is the minimum correlation and Dl = lmax�lmin is the

difference between the maximum and minimum correlation in

the feasible subset. The orientation weight wq
ij for particle i pro-

jection direction j and in-plane rotation q is calculated

wij =

8>>><
>>>:

exp
�
hq
ij

�
R
Ri

dj exp
�
hq
ij

� if j; q˛Ri and lqij > 0

0 else

: (Equation 7)

The variance of the orientation weight distribution depends on

themap quality and the SNR of the images. Large reconstruction

errors or high noise flattens the orientation weight distribution

and spreads a single image over a large region of the search

space, accounting for the indeterminism of the cross-correlation

function. In contrast, an image with high SNR aligned to an accu-

rate reconstruction centers the orientation weight distribution

energy on a few closely lying orientations. All orientations outside

the feasible subset are assigned a weight of zero. We call this

scheme a sparse orientation weighting approach, because

most of the orientations receive a weight of zero. When the
–1306, August 6, 2013 ª2013 Elsevier Ltd All rights reserved 1301



Figure 2. Flowchart for the Method

A low-pass limit llp and CTF-corrected images X are inputted, where ‘‘CTF-

corrected images’’ refers to images corrected using the simple heuristic of

binary phase flipping, adopted in numerous image-processing packages

(Frank et al., 1996; Ludtke et al., 1999; Tang et al., 2007; van Heel et al., 1996).

A configuration S is initialized randomly and Sbest is set to S. The top loop

controls the maximum number of iterations m. The process is repeated until

little further change occurs in the most likely orientations. The j:th iteration

reconstructs a volume, low-pass filters it, projects it in all projection directions

of the neighborhood G(S), and calculates polar reference images. The

second loop is over particle image indices i. The particle image is read, low-

pass filtered, and transformed into polar coordinates. The stochastic

search first evaluates the correlation li,best for the current best orientation

{ji,best, qi,best, fi,best}, then searches orientations in random order to define a

subset Ri 3 Qi of feasible orientations that satisfy lqijRli;best and stops when r

orientations have been found. All nonzero orientation weights are calculated

and the new best configuration Sbest is written to file.
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orientation weights have been calculated for all particle images,

a volume is reconstructed using direct Fourier inversion (Elmlund

and Elmlund, 2012). The reconstruction is obtained by gridding

every particle image i to the Fourier volume in all orientations

of its feasible subset of orientations Ri, while multiplying the par-

ticle Fourier transform with its corresponding orientation weight.

When all images have been gridded, the Fourier volume is

normalized and a new reference volume is generated by reverse

Fourier transformation. The probabilistic volume reconstruction

algorithm is described in detail in the Supplemental Experimental

Procedures. A flowchart for the method is presented in Figure 2.

RESULTS

To demonstrate the robustness of our approach toward initializa-

tion, we performed alignment of 5,000 cryo-EM images of the

ribosome (Frank, 2009), using an initial 3D model of an unrelated

molecule—RNA polymerase II—scaled to the size of a ribosome.

The progress of the reconstruction is depicted in Figure 3A

(Movies S1, S2, and S3 available online). After a few iterations,

the erroneous initial model is transformed into the characteristic

ribosome shape. We concluded that the algorithm in this case

eliminates bias introduced by an initial 3D model that does not

faithfully represent the imaged molecule.

We repeated the ribosome reconstruction process three

times, using different random 3D models for initialization (Fig-

ure 3B). The final maps agreed to a resolution higher than

13 Å, as measured by the FSC = 0.143 criterion (Rosenthal and

Henderson, 2003; Table 1).

A set of 5,000 GroEL images was selected randomly from a

larger data set of�50,000 images (Stagg et al., 2008). The align-

ment was initialized with a random model without assuming any

point-group symmetry. The process converged after 25 itera-

tions (Figure 3C). We compared our map with a previously ob-

tained GroEL cryo-EM map (Ludtke et al., 2004) that had been

low-pass filtered to the corresponding resolution (Figure 3C,

lower panel). The maps agreed to a resolution of 12.2 Å as

measured by the FSC = 0.143 criterion.

A set of 5,000 beta-galactosidase images was selected

randomly from a larger data set of �40,000 images (courtesy

of R. Henderson). The alignment was initialized with a random

model without assuming any point-group symmetry. The pro-

cess converged after 25 iterations. We repeated the alignment,

using random noise for initialization. The correlation coefficient

between the two unfiltered volumes, generated by initialization

from different starting points, was 0.95 (Figure S1). To validate

the reconstructions, we docked the available X-ray structure

(Protein Data Bank [PDB] code 3VD3) to one of the maps (Fig-

ure 3D). The progress of the reconstruction for one of the asym-

metric reconstruction runs is depicted in Movie S4.

Finally, we tested the robustness of our algorithm on simulated

data and concluded that an accurate initial 3D map can be re-

constructed from as few as 1,000 very noisy images (SNR =

0.01; Figure 4).

DISCUSSION

Standard projection image alignment or projection matching is

often erroneously classified as an exhaustive search procedure.
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Scanning through the entire search space would mean evalu-

ating all possible orientations and all possible combinations of

orientations. A systematic search of all possible image align-

ments is computationally intractable even for a few hundred

images (time estimates would be given in CPU years).

Standard projection matching is a greedy local search proce-

dure. It uses a one-exchange neighborhood, defined by search-

ing all orientations for one particle image. This is done for all

particle images, followed by update of themodel. The distinction

between exploring the neighborhood exhaustively and exploring

the entire search space exhaustively is important. Greedy local
l rights reserved



Figure 3. Initial 3D Model Generation from Cryo-EM Images of Molecules with Known Structure

(A) Alignment of ribosome cryo-EM images using an unrelated molecule—RNA polymerase II—as an initial 3D model. The progress of the reconstruction of the

asymmetric ribosome structure is shown for one viewing angle (iteration number is indicated). The erroneous initial 3D model (at iteration number 0) was

transformed into the characteristic ribosome shape. See also Movies S1, S2, and S3.

(B) One view of our four different ribosome maps (middle panel), generated by initialization from different starting points (top panel), and their average (bottom

panel). Quaternary structure regions are indicated in the average map.

(C) Initial 3D model generation from GroEL cryo-EM images. One view of the d7 symmetric structure is shown for different rounds (iteration number is indicated).

No a priori assumption was made about the d7 point-group symmetry of the molecule. Bottom panel: two views of our GroEL map (right) compared with a

previously obtained cryo-EMmap of GroEL (left, EMDB accession code: 1081), low-pass filtered to the corresponding resolution. Themaps agreed to a resolution

of 12.2 Å as measured by the FSC at 0.143.

(D) Two views of one of our beta-galactosidase reconstructions. No a priori assumption was made about the d2 point-group symmetry of the molecule. Docking

of the available X-ray structure (PDB code 3VD3) produced an excellent fit.

See also Figure S1 and Movie S4.
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Table 1. Resolution at FSC 0.143 between Our Docked Ribosome

Reconstructions, Generated by Initialization from Different

Starting Points

Resolution at FSC = 0.143 1 2 3 4

1 N/A 9.1 8.9 12.8

2 9.1 N/A 9.0 11.7

3 8.9 9.0 N/A 9.7

4 12.8 11.7 9.7 N/A

N/A, not applicable.
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search algorithms guarantee convergence to a local optimum.

There are no other approximation algorithms that give better

convergence guarantees from a mathematical standpoint,

although the search behavior of simple hill climbing algorithms

(e.g., projection matching) can be improved upon with other
Figure 4. Initial 3D Model Generation from 1,000 Simulated Ribosome

We generated simulated images by adding Gaussian noise to randomly oriented

constructed to 10 Å, the SNR = 0.05 images to 15 Å, the SNR = 0.02 images to 25

compared with the corresponding views of the correct map, low-pass filtered to th

docked maps showed correlation higher than 0.143 at the applied low-pass limi
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methods. A common strategy is to begin with a greedy local

search algorithm and introduce modifications to improve its

search behavior. Classical examples include greedy randomized

adaptive local search (GRASP) (Feo and Resende, 1995), tabu

search (Glover, 1990), and simulated annealing (Kirkpatrick

et al., 1983). Here, we synergize projection matching with

stochastic hill climbing (Russel and Norvig, 2003) and soft opti-

mization to produce an algorithm that has linear time complexity

with respect to the number of images and diversified search

behavior.

Many design decisions have to be made when developing an

optimization algorithm. Why are we using a direct search proce-

dure rather than a gradient-based optimization method, like

steepest descent or conjugate gradients? If capable of exploring

the search space, gradient-based methods would give orders of

magnitude faster convergence. In our hands, gradient-based

methods fail to produce acceptable solutions to the problem.
Images with Different SNRs

projections of the map (EMDB code 2275). The SNR = 0.1 images were re-

Å, and the SNR = 0.01 images to 30 Å. Two views of our 3D reconstructions are

e corresponding resolution. The FSC between the correct density map and our

t for all three reconstructions.

l rights reserved
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That gradient-based optimization methods fail indicates either

that the goal function is nondifferentiable or that the goal function

landscape is nonconvex. A nonconvex goal function landscape

could be explained by two image properties: the many rotational

autocorrelation peaks and the low SNR obtained in the low-dose

regime. The errors in the goal function landscape increase as the

SNRs of the images decrease. Gradient-based optimizers

become trapped in poor local optima due to the noise. We there-

fore use a direct search-based optimization method that does

not require gradient information.

Because of the low SNR of cryo-EM images it is risky to

greedily attempt to find a single best (deterministic) orientation

for each image. ‘‘Weighted’’ orientation assignment—the

hallmark of ML refinement (Loh and Elser, 2009; Scheres,

2012a; Scheres et al., 2007a, 2007b; Sigworth, 1998)—refers

to the determination of weight distributions, relating known ori-

entations in the search space with the unknown orientation of

the particle images. The expectation maximization algorithm,

commonly used for ML estimation, is a fixed-point iteration

algorithm or hill climber (Dempster et al., 1977). The expectation

maximization algorithm guarantees improvement of the likeli-

hood in every iteration (Bishop, 2006), but it is a local search

method.

Our algorithm is not an expectation maximization algorithm.

We introduce the concept of a feasible subset of orientations

and apply stochastic local search for search space exploration.

We sacrifice the guarantee of improving the goal function in

every iteration in favor of increased search diversification, which

forces the procedure to evaluate many more feasible orienta-

tions and combinations of orientations without introducing sig-

nificant computational overheads, as compared to standard

projection matching. The expectation maximization algorithm,

the standard projection-matching algorithm, and our algorithm

are all local search procedures that, from a mathematical stand-

point, guarantee convergence to a local optimum. In practice,

however, the convergence rate and the quality of the local opti-

mum obtained may vary considerably between different local

search procedures.

We approach the cryo-EM image alignment problem by dis-

cretizing the orientation space and applying an optimization

method that determines a matrix of weights that describes the

likelihood that image i adopts orientation j. The alignment of

each image is based on the average of many feasible (or likely)

alignments. In physics and probability theory, methods of this

kind are referred to as mean field theories or self-consistent field

theories.Mean field approaches similar to ourmethod have been

used for prediction of protein side chain conformations (Koehl

and Delarue, 1994) and processing of coherent X-ray free elec-

tron laser diffraction images (Loh and Elser, 2009). Our algorithm

operates in real space (the Fourier transform is only used to

generate projections of the reconstruction) and the background

pixel values are not used to determine any statistics. Masking of

images and volumes is therefore part of the procedure, which is

critical for noisy images.

In all tested cases, our single-particle reconstruction protocol

generates accurate 3D maps directly from the noisy cryo-EM

images, without prior 2D image alignment, clustering, averaging,

a priori assumptions about the structure or its symmetry, or

reseeding.
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EXPERIMENTAL PROCEDURES

CTF Correction

We use the simple heuristic of binary phase flipping for CTF correction (Frank

et al., 1996; Ludtke et al., 1999; Tang et al., 2007; van Heel et al., 1996). CTF

correction by phase flipping only corrects the resolution-dependent CTF

phase inversions, disregarding the damping of Fourier amplitudes with

increasing resolution. Phase-flipped images are noisier than images corrected

withmore accurate approaches, such as the reciprocal space adaptiveWiener

filter (Penczek, 2010). Here, we are concernedwith the problem of reconstruct-

ing accurate low-resolution maps ab initio from very noisy images. More

sophisticated approaches for dealing with the CTF will be implemented in

the future.

Description of Data Sets

The ribosome imageswere recorded on film, using an FEI TF20 electronmicro-

scope with a field-emission gun operating at 200 kV (Frank, 2009). Richard

Henderson provided the beta-galactosidase images, recorded with a direct

electron detector, using an FEI Polara electron microscope with a field-emis-

sion gun operating at 300 kV. The national resource for automated molecular

microscopy (NRAMM), Scripps (NIH P41 program RR17573) provided the

GroEL images, recordedwith an ordinary CCDdetector, using an FEI F20 elec-

tron microscope with a field-emission gun operating at 200 kV.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Probabilistic Volume Reconstruction, one

figure, and four movies and can be found with this article online at http://dx.

doi.org/10.1016/j.str.2013.07.002.
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