
Online Policy Adaptation for Ensemble

Classifiers

Christos Dimitrakakis and Samy Bengio
IDIAP, P.O. Box 592, CH-1920 Martigny, Switzerland

Abstract. Ensemble algorithms can improve the performance of a given
learning algorithm through the combination of multiple base classifiers
into an ensemble. In this paper, the idea of using an adaptive policy for
training and combining the base classifiers is put forward. The effective-
ness of this approach for online learning is demonstrated by experimental
results on several UCI benchmark databases.

1 Introduction

The problem of pattern classification has been addressed in the past using
supervised learning methods. In this context, a set of N example patterns
D̂ = {(x1, y1), (x2, y2), ..., (xN , yN)} is presented to the learning machine, which
adapts its parameter vector so that, when input vector xi is presented to it,
the machine outputs the corresponding class yi. Let us denote the output of
a learning machine for a particular vector xi as h(xi). The classification error
for that particular example can be designated as εi = 1 if h(xi) 6= yi and
0 otherwise. Thus, the classification error for the set of examples D̂ can be
summarised as the empirical error L̂ =

∑
i εi/N . If D̂ is a sufficiently large

representative sample taken from a distribution D, the generalization error
L =

∫
pD(x)ε(x) would be close to L̂. In practice, however, the training set

provides limited sampling of the distribution D, leading to problems such as
overfitting. Adding the effects of the classifier’s inherent bias and variance, we
will have L > L̂.

Since the generalization error cannot be directly observed, it has been com-
mon to use a part of the training data for validation for its estimation. This
has led to the development of techniques mainly aimed at reducing overfitting
caused by limited sampling, such as early stopping and K-fold cross-validation.

Another possible solution is offered by ensemble methods, such as the mix-
tures of experts (MOE) architecture [7], bagging [4] and boosting [6]. The
boosting algorithm AdaBoost has been shown to significantly outperform other

This work is supported by the Swiss National Science Foundation through the National
Centre of Competence in Research on ”Interactive Multimodal Information Management”.

ensemble techniques. Theoretical results explaining the effectiveness of Ad-
aBoost relate it to the margin of classification [11]. The margin distribution
for the two class case can be defined as:

marginf (x, y) = yf(x),

where x ∈ X , y ∈ {−1, 1} and f : X → [−1, 1]. In general, the hypothesis h(x)
can be derived from f(x) by setting h(x) = sign(f(x)). In this case, |f(x)| can
be interpreted as the confidence in the label prediction. For the multi-class
case, let fy(x) be the model’s estimate of the probability of class y given input
x. In this case the margin is defined as:

marginf (x, y) = fy(x)−max
y′ 6=y

fy′(x). (1)

Thus the margin can serve as a measure of how far away from the threshold
classification decisions are made. A particular measure is the minimum margin
over the set D̂, i.e.:

marginmin(D̂) = min
(x,y)∈D̂

marginf (x, y).

It is argued [11] that AdaBoost is indirectly maximising this margin, leading to
more robust performance. Although there exist counterexamples for which the
minimum margin is not an adequate predictor of generalisation [5], attempts
to apply algorithms that directly maximise the margin have obtained some
success [10, 9].

In this work the possibility of using an adaptive rather than a fixed policy
for training and combining base classifiers is investigated. The field of reinforce-
ment learning [12] provides natural candidates for use in adaptive policies. In
particular, the policy is adapted using Q-learning [13], a method that improves
a policy through the iterative approximation of an evaluation function Q. Pre-
viously Q-learning had been used in a similar mixture model applied to a control
task [1]. An Expectation Maximisation based mixtures of experts (MOE) al-
gorithm for supervised learning was presented in [8]. In this paper, we attempt
to solve the same task as in the standard MOE model, but through the use of
reinforcement learning rather than expectation maximization techniques.

The rest of the paper is organised as follows. The framework of Reinforce-
ment Learning (RL) is introduced in Section 2. Section 2.1 outlines how the
RL methods are employed in this work and describes how the system is imple-
mented. Experiments are described in Section 3, followed by conclusions and
suggestions for future research.

2 General Architecture

The RL classifier ensemble consists of a set of n base classifiers, or experts,
E = {e1, e2, ..., en} and a controlling agent that selects the experts to make

classification decisions and to train on particular examples. The specific RL
algorithm employed in this work is outlined below. The following section de-
scribes in what manner it was used to control the classifier ensemble.

For the controlling agent we define a set of states s ∈ S and a set of actions
a ∈ A. At each time step t, the agent is at state st = s and chooses action
at = a. After the action is taken, the agent receives a reward rt and it enters
a new state st+1 = s′. A policy π : (S,A) → [0, 1] is defined as a set of
probabilities:

π =
{

p(a|s)
∣∣∣(s, a) ∈ (S,A)

}
for selecting an action a given the state s. The objective is to find the policy
that maximises the discounted future return of the system, starting at time t,
which is defined as:

Rt =
∞∑

k=0

γkrt+k+1,

where γ ∈ [0, 1) is a discount factor. This can be achieved by the iterative
application of two steps. First, we estimate the return of actions under the
current policy π. More specifically, we define Qπ : (S,A)→ < as the expected
return of taking action a when being at state s at time t and following π
thereafter:

Qπ(s, a) = Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣st = s, at = a
}

.

Qπ itself is unknown and we maintain instead an estimate Q for each state
action pair. Herein we employ the Q-learning update when action aj is selected
in state s:

Q(s, aj)← Q(s, aj) + η(r + γ max
i

Q(s′, ai)−Q(s, aj)), η > 0 (2)

The second step involves deriving a policy π from the updated estimates Q.
This can be derived from the evaluations Q(s, a) either deterministically, by al-
ways selecting the action aj with the largest expected return, or stochastically.
ε−greedy action selection selects the highest evaluated action with probability
(1 − ε), with ε ∈ [0, 1], otherwise it selects a random action. Softmax action
selection selects action aj with probability eQ(s,aj)/

∑
i eQ(s,ai). Stochastic ac-

tion selection is in general necessary so that all state-action pairs are sampled
frequently enough for us to have accurate estimates of their expected return.

2.1 Implementation

We employ an architecture with n experts, implemented as multi-layer percep-
trons (MLPs), and a further MLP with n outputs and parameters θ which acts
as the controlling agent. At each time step t a new example x is presented to
the ensemble and each expert ei emits a decision hi(x). The state space of the
controlling agent is S ≡ X , the same as the classifiers’ input space. Its outputs
approximate Q(s, aj) in order to select actions from A. We examine the case

in which each action aj corresponds to selecting expert ej for training on the
current example.

The decisions of the experts themselves can be combined with a weighted
sum: f(x) =

∑
i wihi(x), where wi = eQ(x,ai)P

j eQ(x,aj) . Alternatively we can make

hard decisions by setting f(x) = hj(x), where j = arg maxi Q(s, ai). The
classification decision results in a return r ∈ {0, 1}, which is 1 if f(x) = y and
0 otherwise.

The Q-learning update remains essentially the same as in (2) but, because
of the parameterised representation, we perform gradient descent to update
our estimates, with the back-propagated error being δ = r + γ maxi Q(s′, ai)−
Q(s, aj) and learning rate η > 0. The algorithm is implemented as follows:

1. Select example xt randomly from X .

2. Given s = xt, choose aj ∈ A according to a policy derived from Q (for
example using ε-greedy action selection) .

3. Take action aj , observe r and the next state s′ = xt+1, chosen randomly
from X .

4. Calculate δ ← r + γ maxi Q(s′, ai)−Q(s, aj).

5. θ ← θ + ηδ∇θQ(s, aj) .

6. s← s′.

7. Loop to 2, unless termination condition is met.

3 Experimental results

A set of experiments has been performed, in order to evaluate the effective-
ness of this approach, on 9 datasets that are available from the UCI Machine
Learning Repository [3]. For each dataset cross-validation was used to select
the number of hidden units for the base classifier. Each classifier was trained
for 100 iterations and a learning rate η = 0.01 was used. The discount param-
eter γ for the controlling agent was set to 01. The results reported here are
for ε-greedy action selection and for the hard combination method. Results
with softmax action selection and weighted combination are not significantly
different.

A comparison was made between the RL-controlled mixture, a single MLP,
the Mixture of Experts and AdaBoost using MLPs. As can be seen in Table 1,
the ensembles generally manage to improve test performance compared to the
base classifier, with the RL mixture outperforming AdaBoost and MOE 4 and

1The classification task is similar to an n-armed bandit problem, since the next state is
not influenced by the agent’s actions. However it is more accurately described as a partially
observable process, since the parameters of the classifiers constitute a state which changes
depending on the agent’s actions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

1 expert
2 experts
4 experts
8 experts

16 experts
32 experts

Figure 1: Cumulative margin dis-
tribution for RL on the ionosphere
dataset, with an increasing number of
experts.

MLP Boost MOE RL
7.28% 1.21% 4.84% 2.43%
32.8% 16.2% 31.6% 29.1%
15.0% 16.2% 13.7% 15.0%
5.96% 5.96% 5.96% 3.08%
4.10% 2.52% 4.55% 3.73%
2.63% 1.42% 2.13% 2.3%
2.72% 3.10% 2.80% 2.69%
8.33% 6.48% 7.75% 7.41%
56.1% 61.9% 68.1% 48.3%

Table 1: Classification error on the
UCI breast, forest, heart, ionosphere,
letter, optdigits, pendigits, spambase
and vowel datasets using 32 experts.

7 times out of 9 respectively. For each dataset we have also calculated the
cumulative margin distribution resulting from equation (1). For the RL mixture
there was a constant improvement in the distribution in most datasets when
the number of experts was increased (c.f. Figure 1), though this did not always
result in an improvement in generalisation performance.

4 Conclusions and Future Research

The aim of this work was to demonstrate the feasibility of using adaptive
policies to train and combine a set of base classifiers. While this purpose has
arguably been reached, there still remain some questions to be answered, such
as under what conditions the margin of classification is increased when using
this approach.

In the future we would like to explore the relationship between RL and
EM techniques for training ensembles. Furthermore, it would be interesting to
investigate the application of RL when the agent’s state space is extended to
include information about each expert. In this case it would no longer consti-
tute of i.i.d samples, so the agent’s actions will affect its future state. However,
perhaps the most promising direction in this domain would be to extend the
set of possible actions so that more interesting policies can be developed. For
such enlarged spaces it would appear necessary to replace action-value methods
for policy improvement with direct gradient descent in policy space [2]. The
latter methods have also been theoretically proven to converge in the case of
multiple agents and are much more suitable for problems in partially observable
environments and with large state-action spaces.

References

[1] C. Anderson and Z. Hong. Reinforcement learning with modular neural
networks for control, 1994.

[2] Jonathan Baxter and Peter L. Bartlett. Reinforcement learning in
POMDP’s via direct gradient ascent. In Proc. 17th International Conf. on
Machine Learning, pages 41–48. Morgan Kaufmann, San Francisco, CA,
2000.

[3] C.L. Blake and C.J. Merz. UCI repository of machine learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html, 1998.

[4] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[5] Leo Breiman. Arcing the edge. Technical report, Department of Statistics,
University of California, Berkeley, CA., 1997.

[6] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of Computer
and System Sciences, 55(1):119–139, 1997.

[7] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive
mixtures of local experts. Neural Computation, 3(1):79–87, 1991.

[8] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts
and the EM algorithm. Neural Computation, 6(2):181–214, 1994.

[9] Yi Li and Philip M. Long. The relaxed online maximum margin algorithm.
Machine Learning, 46(1/3):361, 2002.

[10] Llew Mason, Peter L. Bartlett, and Jonathan Baxter. Improved gener-
alization through explicit optimization of margins. Machine Learning,
38(3):243, 2000.

[11] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boost-
ing the margin: a new explanation for the effectiveness of voting methods.
In Proc. 14th International Conference on Machine Learning, pages 322–
330. Morgan Kaufmann, 1997.

[12] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[13] Christopher J.C.H. Watkins and Peter Dayan. Technical note Q-learning.
Machine Learning, 8:279, 1992.

