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Abstract

It has been shown previously that systems based
on local features and relatively complex generative
models, namely 1D Hidden Markov Models (HMMs) and
pseudo-2D HMMs, are suitable for face recognition (here
we mean both identification and verification). Recently a
simpler generative model, namely the Gaussian Mixture
Model (GMM), was also shown to perform well. In this
paper we first propose to increase the performance of
the GMM approach (without sacrificing its simplicity)
through the use of local features with embedded positional
information; we show that the performance obtained is
comparable to 1D HMMs. Secondly, we evaluate different
training techniques for both GMM and HMM based
systems. We show that the traditionally used Maximum
Likelihood (ML) training approach has problems estimating
robust model parameters when there is only a few training
images available; we propose to tackle this problem through
the use of Maximum a Posteriori (MAP) training, where
the lack of data problem can be effectively circumvented;
we show that models estimated with MAP are significantly
more robust and are able to generalize to adverse conditions
present in the BANCA database.

1. Introduction
Identity verification using face images is an active

research area and has many real-life applications, such
as access control, transaction authentication and secure
teleworking. An identity verification system has to
discriminate between two kinds of events: either the person
claiming a given identity is the true claimant or the person is
an impostor. This is in contrast to an identification system,
which attempts to find the identity of a given person out of a
pool of people. Both verification and identification systems
can be thought of as falling in the general research area of
face recognition.

Many techniques have been proposed for face
recognition; some examples are systems based on
PCA-based feature extraction (eigenfaces), Elastic Graph
Matching, Artificial Neural Networks [17], Support Vector
Machines and Normalised Correlation [13]. Examples
specific to generative models include 1D Hidden Markov
Models (HMMs) [14], pseudo-2D HMMs [6, 10] and

Gaussian Mixture Models (GMMs) [2, 15, 16] (which can
be considered as a simplified version of HMMs). All of
the above-mentioned generative models use local features
(that is, the features only describe a part of the face); this
is in contrast to holistic features, such as in the PCA-based
approach, where one feature vector describes the entire
face.

In generative approaches, the face is typically analyzed
on a block by block basis, and feature extraction such
as 2D DCT [8] or DCTmod2 [15] is applied to each
block. In the HMM approaches, the spatial relation between
major face features (such as the eyes and nose) is
kept (although not rigidly); in the GMM approach the
spatial relation is effectively lost (as each block is treated
independently), resulting in good robustness to imperfectly
located faces [2]. In this paper we first propose to restore
some of spatial relation by using local features with
embedded positional information. By working in the feature
domain, the simplicity advantage of the GMM approach is
retained.

In the approaches presented in [6, 10, 14, 15], generative
models are trained using the Maximum Likelihood
(ML) criterion via the Expectation Maximization (EM)
algorithm [4]. It is generally known that one of the
drawbacks of training via this paradigm is that a lot of data
is required to properly estimate model parameters; this can
be a problem when there are only a few training images
available. In an attempt to tackle this problem, Eickeler et
al. [6] proposed to use a well trained generic (non-client
specific) model as the starting point for ML training. While
the results in [6] were promising, they were obtained on the
rather easy ORL database [14]. Through experiments on the
much harder BANCA database [1], we will show that even
with the generic model as the starting point, ML training
still produces poor models. Our second main proposition
is thus to replace ML training with Maximum a Posteriori
(MAP) training [7], which effectively circumvents the lack
of data problem.

The tone of this paper is hence an evaluation, on
a common database, of different approaches to face
verification using generative models. In Section 2 we
briefly overview the BANCA database and its experiment
protocols. In Section 3 we summarize the DCTmod2 feature
extraction and describe the proposed extension (embedding
of positional information). In Section 4 we review the



GMM, 1D HMM and pseudo-2D HMM representations
of faces; we also describe MAP training for each model.
Section 5 is devoted to experiments; here we evaluate the
GMM approach using standard DCTmod2 and the proposed
extended features; we also evaluate the GMM, 1D and
pseudo-2D HMM approaches trained with traditional ML,
ML initialized by a global model, and the suggested MAP
approach. We analyze the results, draw conclusions and
suggest future work in Section 6.

2. The BANCA Database and Protocols
The BANCA database [1] was designed to test

multi-modal identity verification with various acquisition
devices under several scenarios. In our experiments we use
face images from the English corpus which contains 52
subjects; the population is subdivided into 2 groups of 26
subjects, denoted as g1 and g2.

Each subject participated in 12 recording sessions in
different conditions and with different cameras. Each of
these sessions contains two video recordings: one true
client access and one impostor attack. Five “frontal” (not
necessarily directly frontal) face images have been extracted
from each video recording. Sessions 1-4 contain data
for the controlled condition, while sessions 5-8 and 9-12
respectively contain degraded and adverse conditions (see
Fig. 1); the latter two conditions differ from the controlled
condition in terms of image quality, lighting and/or pose.

Seven distinct configurations specify which images
can be used for training and testing; the configurations
are: Matched Controlled (Mc), Matched Degraded (Md),
Matched Adverse (Ma), Unmatched Degraded (Ud),
Unmatched Adverse (Ua), Pooled test (P) and Grand test
(G). Table 1 describes the usage of different sessions in each
configuration.

We believe that the most realistic cases are when we
train the system in controlled conditions and test it in
different conditions; hence in this paper we only performed
experiments with configurations Mc, Ud, Ua and P. This
limitation to four different scenarios should make the results
easier to interpret. Performance is measured in terms of Half
Total Error Rate (HTER), defined as:

HTER = (FAR + FRR) /2

where FAR and FRR are the False Acceptance Rate and
False Rejection Rate, respectively. Since in real life the
decision threshold has to be chosen a priori, it is selected
to obtain Equal Error Rate (EER) performance (where

Figure 1. Example images from the BANCA
database. Left to right: controlled, degraded and
adverse conditions.

FAR=FRR) on the validation set; it is then used on the test
set to obtain a HTER figure. Here we use set g1 as the
validation set and set g2 as the test set.

3. Preprocessing and Feature Extraction
Face images from the BANCA database are converted

into gray-scale values and a 80 × 64 (rows × columns)
face window is cropped out; face location is based on
manually located eye positions. Each face window contains
the face area from the eyebrows to the mouth; moreover, the
location of the eyes was the same in each face window (via
geometric normalization); see Fig. 2 for an example.

As mentioned before we use manually located eye
positions in order to make the results independent of the
quality of the face localization system; however it must be
noted that the results are biased when compared to a real life
system (where the face needs to be automatically located).

Histogram equalization is used to normalize the face
images photometrically. We then extract DCTmod2 features
from each image face [15]. We have found the combination
of histogram equalization and feature extraction to provide
good results in preliminary experiments. The feature
extraction process is summarized as follows. A given face
image is analyzed on a block by block basis; each block is
N × N (here we use N = 8) and overlaps neighboring
blocks by a configurable amount of pixels. Each block
is decomposed in terms of two-dimensional DCT basis
functions [8]. A feature vector for a block located at row
a and column b is then constructed as:

~x(a,b) =
h

∆hc0 ∆vc0 ∆hc1 ∆vc1 ∆hc2 ∆vc2 c3 c4 ... cM−1

iT

where cn represents the n-th DCT coefficient, while
∆hcn and ∆vcn represent the horizontal and vertical delta
coefficients respectively, and are computed using DCT
coefficients extracted from neighboring blocks. Compared
to traditional DCT feature extraction [6, 10], the first three
DCT coefficients are replaced by their respective horizontal
and vertical deltas in order to reduce the effects of
illumination direction changes. In this study we use M=15
(choice based on [15]), resulting in an 18 dimensional
feature vector for each block.

Train SessionsTest Sessions
1 5 9 1,5,9

C: 2-4
I: 1-4

Mc

C: 6-8
I: 5-8

Ud Md

C: 10-12
I: 9-12

Ua Ma

C: 2-4,6-8,10-12
I: 1-12

P G

Table 1. Usage of the seven BANCA protocols
(C: client, I: impostor)



The degree of overlap has two effects: the first is that
as overlap is increased the spatial area used to derive one
feature vector is decreased; the second is that as the overlap
is increased the number of feature vectors extracted from an
image grows in a quadratic manner.

3.1. Embedding Positional Information
The above DCTmod2 feature extraction has been

successfully used in a GMM based face verification
system [2, 15]. In such a GMM system (see Section 4.1
for more details) the spatial relation between major face
features (such as the eyes and nose) is effectively lost
(as each block is treated independently). We propose to
increase the performance of the GMM approach (without
sacrificing its simplicity) through extending the DCTmod2
approach with embedded positional information. Formally,
the feature vector for a block at row a and column b is found
with:

~x extended
(a,b) =

»

“

~x original

(a,b)

”T

a b

–T

where ~x
original

(a,b) is the standard DCTmod2 feature vector
for the block located at row a and column b. By explicitly
embedding positional information into each feature vector,
a weak constraint is placed on the areas that each gaussian
in the GMM can model, thus making a face model more
specific.

4. Generative Model Based Classifiers
Let us denote the parameter set for client C as λC ,

and the parameter set describing a generic face (non-client
specific) as λC . Given a claim for client C’s identity and
a set of feature vectors X = {~xt}

NV

t=1 supporting the claim
(extracted from the given face), we find an opinion on the
claim using:

Λ(X) = log P (X|λC) − log P (X|λC) (1)

where P (X|λC) is the likelihood of the claim coming from
the true claimant and P (X|λC) is the likelihood of the
claim coming from an impostor. The generic face model
is also known as a universal background model and as a
world model; it is typically trained with data from many
people (here we use data from BANCA’s Spanish corpus).
The verification decision is then reached as follows: given
a threshold τ , the claim is accepted when Λ(X) ≥ τ and
rejected when Λ(X) < τ .

We use three different ways to train each client model:

1. Traditional ML training, where k-means initialization
is used [4, 5].

2. ML training with a generic (non-client specific) model
as the starting point (as in [6]); data from many people
is used the find the parameters of the generic model
via traditional ML training; this is the same generic
model used for calculating P (X |λC) in Eqn. (1) for
all generative approaches.

3. MAP training [7]; here a generic model is used as
in point (2) above, but instead of using it merely as

a starting point, the model is adapted using client
data. Given a set of training vectors X , the probability
density function (pdf) P (X |λ) and the prior pdf of λ,
P (λ), the MAP estimate of model parameters, λMAP is
defined as:

λMAP = arg max
λ

P (λ|X) (2)

= arg max
λ

P (X|λ)P (λ) (3)

Assuming λ to be fixed but unknown is equivalent
to having a non-informative P (λ), reducing the
solution of λMAP to the standard ML solution. Thus,
the difference between ML and MAP training is in
the definition of a prior distribution for the model
parameters to be estimated. Further discussion on
MAP training is given in Section 4.1.

4.1. Gaussian Mixture Model

In the GMM approach, the likelihood of a set of feature
vectors is found with

P (X|λ) =

NV
Y

t=1

P (~xt|λ) (4)

where
P (~x|λ) =

NG
X

j=1

mj N (~x|~µj , Σj) (5)

λ = {mj , ~µj ,Σj}
NG

j=1 (6)

Here, N (~x|~µ,Σ) is a D-dimensional gaussian function
with mean ~µ and diagonal covariance matrix Σ. λ is the
given parameter set, NG is the number of gaussians and mj

is the weight for gaussian j (with constraints
PNG

j=1 mj = 1
and ∀ j : mj ≥ 0).

An implementation of MAP for client model adaptation
consists of using a global parameter to tune the relative
importance of the prior. In this case, the equation for
adaptation of the means is [9]:

µ̂k = (1 − α)µw
k + α

PT

t=1 P (k|~xt)~xt
PT

t=1 P (k|~xt)
(7)

where µ̂k is the new mean of the k-th gaussian, µw
k is

the corresponding mean in the generic model, P (k|~xt) is
the posterior probability of the k-th gaussian (from the
client model from the previous iteration), and α ∈ [0, 1]
is the adaptation factor chosen empirically on a separate
validation set. The adaptation procedure is iterative, thus
an initial client model is required; this is accomplished by
copying the generic model.

As can be seen, the new mean is simply a weighted
sum of the prior mean and new statistics; α can hence
be interpreted as the amount of faith we have in the new
statistics; when the amount of training data is low, we would
generally set α to be low.

It must be noted that only the means of the gaussians are
adapted, as it has been empirically observed that adaptation
of the other parameters generally does not improve
performance [9]. The other parameters (the weights and
covariance matrices) are copied from the generic model to
each client model.



4.2. 1D Hidden Markov Model
The one-dimensional HMM (1D HMM) is a particular

HMM topology where only self transitions or transitions to
the next state are allowed. This type of HMM is also known
as a top-bottom HMM [14] or left-right HMM in the context
of speech recognition [12]. Here the face is represented as
a sequence of overlapping rectangular blocks from top to
bottom of the face (see Fig. 2 for an example). To simulate
the rectangular block representation, DCTmod2 feature
vectors from the same line of blocks are concatenated to
form a large observation vector.

The model is characterized by the following:

1. N , the number of states in the model; each
state corresponds to a region of the face;
S = {S1, S2, . . . , SN} is the set of states. The state
of the model at row t is given by qt ∈ S, 1 ≤ t ≤ T ,
where T is the length of the observation sequence
(number of rectangular blocks).

2. The state transition matrix A = {aij}. The topology of
the 1D HMM allows only self transitions or transitions
to the next state:

aij =



P (qt = Sj |qt−1 = Si) for j = i, j = i + 1
0 otherwise

3. The state probability distribution B = {bj(~xt)}, where

bj(~xt) = p(~xt|qt = Sj) (8)

The features are expected to follow a continuous
distribution and are modeled with mixtures of
gaussians.

In compact notation, the parameter set of the 1D HMM is:

λ = (A,B) (9)

If we let Q to be a state sequence q1, q2 · · · qT , then the
likelihood of an observation sequence X is:

P (X|λ) =
X

∀ Q

P (X,Q|λ) (10)

=
X

∀ Q

T
Y

t=1

bqt
(~xt)

T
Y

t=2

aqt−1,qt
(11)

Figure 2. Sampling window and 1D HMM
topology.

The calculation of this likelihood according to the
direct definition (11) involves an exponential number
of computations; in practice the Forward-Backward
procedure is used [12]; it is mathematically equivalent, but
significantly more efficient.

For the case of the 1D-HMM, MAP adaptation of the
means is [c.f. Eqn. (7)]:

µ̂k,i = (1 − α)µw
k,i + α

PT

t=1 P (k, i|~xt)~xt
PT

t=1 P (k, i|~xt)
(12)

where P (k, i|~xt) is the joint posterior of the state i and its
k-th gaussian.

4.3. Pseudo-2D HMM

Emission probabilities of 1D HMMs are typically
represented using mixtures of gaussians. For the case of
pseudo 2D HMM (P2D HMM) (also known as Embedded
HMM [11]) the emission probabilities of the HMM (now
referred to as “main HMM”) are estimated through a
secondary HMM (referred to as an “embedded HMM”).
The states of the embedded HMMs are modeled by a
mixture of gaussians. This approach was used for the
face identification task in [6, 14] and the training process
is described in detail in [11]. As shown in Fig. 3, we
chose to perform the vertical segmentation of the face
image by the main HMM and horizontal segmentation
by embedded HMMs. We made this choice because the
main decomposition of the face is instinctively from top to
bottom (forehead, eyes, nose, mouth).

The corresponding equation for MAP adaptation of the
means [c.f. Eqns. (7) and (12)] is:

µ̂k,i,j = (1 − α)µw
k,i,j + α

PT

t=1 P (k, i, j|~xt)~xt
PT

t=1 P (k, i, j|~xt)
(13)

where P (k, i, j|~xt) is the joint posterior of the state i of the
main HMM, state j of its embedded HMM and its k-th
gaussian.

Figure 3. P2D HMM: the emission distributions
of the vertical HMM are estimated by horizontal
HMMs. qi represent the states of the main HMM
and rj represent the embedded HMMs states.



5. Experiments
For each client model, the training set was composed of

five images per client; we artificially increased this to ten
images by mirroring each original face window.

The generic model was trained with faces from the
Spanish corpus of BANCA (containing faces different from
the English corpus) making the generic model independent
of the subjects present in the client database.

DCTmod2 features were extracted using either four or
seven pixel overlap; using the validation set g1 we found
that an overlap of four pixels is better for the GMM
approaches while an overlap of seven pixels is better for
the HMM based approaches. The effects of the differences
in the overlap are currently under further investigation.

As described in Section 4.2, feature vectors from the
same row are concatenated in the 1D HMM approach. Since
the resulting vector would be too big if we concatenate
all the features from the same row (recall that seven
pixel overlap is used), we chose to concatenate features
from every eighth block (thus eliminating horizontally
overlapped blocks).

In order to find the optimal capacity of the models, we
used the validation set g1 to select the size of the model (e.g.
number of gaussians in the GMMs and number of states
of the HMMs) as well as other hyper-parameters such as
the variance floor for the generic model and the adaptation
coefficient α. For each value of the hyper-parameter to
tune, we trained the client models using the client training
set (extended by mirroring); we then selected the value
of the hyper-parameter that optimized the EER on the
validation set g1. Finally, we tested the models using these
hyper-parameters on the test set g2.

5.1. Results and Discussion
Table 2 shows the results in terms of HTER for

the four different systems presented in this paper.
Specifically, GMM indicates the GMM approach with
standard DCTmod2 feature vectors, GMMext indicates the
GMM approach with extended DCTmod2 feature vectors,
and 1D HMM & P2D HMM are self explanatory. For
all four systems results are shown for the three different
training strategies (Section 4); models trained using the
traditional ML criterion have a ML suffix; for ML training
initialized with a generic model, the suffix is init; for
MAP training, the suffix is adapt. The results table also
contains performance figures for the best two systems
reported in [13]; the first system is a combination of
Linear Discriminant Analysis and Normalised Correlation
(LDA/NC), while the second is based on Support Vector
Machines (SVMs). It must be noted that in [13], g1 and g2
were used alternatively as the validation set and the test set;
the results were then computed using the mean of HTERs
from the two configurations; in contrast we have performed
our experiments only with the g1 as the validation set and
g2 as the test set.

It is interesting to see that for the Matched Controlled
condition (Mc), ML training performs better than

adaptation (except for P2D HMM as discussed later)
but for Unmatched conditions (Ud and Ua) or partially
unmatched condition (P) the models trained by MAP
always perform better. We believe that the models trained
by ML are too highly tuned (i.e. over-fitted) to the training
data (and hence the training condition); while this works
well when the training and testing conditions are matched
(as in Mc), when the condition changes there is a mismatch
between the model and the given condition, resulting in
rapid performance degradation. The results also show
that ML training with initialization by a generic model
generally does not eventuate in better models compared
to traditional ML training (where k-means initialization is
used).

For the GMM approach, we can see that the use
of extended DCTmod2 feature vectors results in better
performance compared to standard DCTmod2, especially in
the Ua condition. It can also be seen that the performance
of the extended GMM approach is comparable to the
1D HMM approach.

In the 1D HMM approach, the dimensionality of the
feature vectors is 144 against 18 for the standard GMM
and P2D HMM approaches and 20 for the extended GMM
approach. We believe that the large dimensionality of the
feature vectors used in the 1D HMM approach is the main
drawback; the larger the dimensionality, the more training
data is required to properly estimate model parameters [5]
(especially for the generic model, which is then adapted for
each client).

For ML training, the performance of P2D HMM

Protocol Mc Ud Ua P

LDA/NC (from [13]) 4.9 16.0 20.2 ∗ 14.8
SVM (from [13]) 5.4 25.4 30.1 20.3
GMM ML 5.5 44.6 26.0 26.6
GMM init 5.5 45.0 25.8 26.5
GMM adapt 6.4 25.6 22.8 19.4
GMMext ML 5.6 38.8 21.3 23.9
GMMext init 5.1 37.2 21.2 23.8
GMMext adapt 6.2 23.7 17.6 18.6
1D-HMM ML ∗ 2.4 26.6 21.8 21.6
1D-HMM init 5.1 27.4 21.8 21.9
1D-HMM adapt 6.9 16.0 17.3 19.8
P2D-HMM ML 8.3 27.0 23.0 22.1
P2D-HMM init 10.1 25.5 22.6 22.0
P2D-HMM adapt 3.4 ∗ 12.7 ∗ 15.4 16.4

Table 2. HTER performance of GMM (standard
DCTmod2 features), GMMext (extended DCTmod2
features), 1D HMM and P2D HMM. ML: client
models trained using traditional ML criterion;
init: client models trained using ML initialized
with a generic model; adapt: client models trained
using MAP. The asterix indicates the best result for
a protocol, while boldface indicates the best result
within a model type and protocol.



approach is not better than 1D HMM; this can be
explained by the much larger number of parameters used in
P2D HMM (hence requiring more training data). However,
when MAP training is used, the lack of data problem
is effectively circumvented, resulting in the P2D HMM
approach obtaining (in almost all cases) significantly better
performances than the other generative models presented
in this paper; moreover, in three out of four cases, the
P2D HMM system performs better than the LDA/NC
system presented in [13].

6. Conclusions and Future Work
It has been shown previously that systems based on local

features and relatively complex generative models,
namely 1D Hidden Markov Models (HMMs) and
pseudo-2D HMMs, are suitable for face recognition.
Recently a simpler generative model, namely the Gaussian
Mixture Model (GMM), was also shown to perform well.

In this paper we first proposed to increase the
performance of the GMM approach (without sacrificing its
simplicity) through the use of local features with embedded
positional information; we showed that the performance
obtained is comparable to 1D HMMs. Secondly, we
evaluated different training techniques for both GMM and
HMM based systems. We showed that the traditionally
used Maximum Likelihood (ML) training approach has
problems estimating robust model parameters when there
is only a few training images available; we showed that
models estimated with MAP training (where the lack of data
problem can be effectively circumvented) are significantly
more robust and are able to generalize to adverse conditions
present in the English corpus of the BANCA database;
further experiments on the French corpus can be performed
to validate these results.

While in this work we did not take into account
automatic face localization, we note that techniques based
on holistic representation (which in effect rigidly preserve
spatial relations between facial characteristics), can be
adversely affected by incorrect face localization [2]; this
is in contrast to local feature based approaches (such as
GMMs and HMMs) where the spatial relation between
facial characteristics is less constrained; in future work
we will hence evaluate the robustness of GMMext and
P2D HMM approaches to imperfect face localization. In
other future work we will investigate effects of embedding
positional information into feature vectors used in the
P2D HMM approach; moreover, we will examine why
different overlap settings in DCTmod2 feature extraction
are preferred by different models.
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machine learning software library”, IDIAP Research Report
02-46, Martigny, Switzerland, 2002. (see www.idiap.ch)

[4] A.P. Dempster, N.M. Laird, D.B. Rubin,
“Maximum-likelihood from incomplete data via the
EM algorithm”, J. Royal Statistical Soc. Ser. B, 39 (1),
1977, 1-38.

[5] R. Duda, P. Hart, G. Stork, Pattern Classification, Wiley,
2001.

[6] S. Eickeler, S. Müller, R. Gerhard, “Recognition of JPEG
Compressed Face Images Based on Statistical Methods”,
Image and Vision Computing, 18 (4), 2000, 279-287.

[7] J.-L. Gauvain and C.-H. Lee, “Maximum a Posteriori
Estimation for Multivariate Gaussian Mixture Observations
of Markov Chains”, IEEE Trans. Speech and Audio
Processing, 2 (2), 1994, 291-298.

[8] R. C. Gonzales and R. E. Woods, Digital Image Processing,
Addison-Wesley, 1993.
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