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Abstract.
In this paper, we discuss a family of new Automatic Speech Recognition (ASR) approaches,

which somewhat deviate from the usual ASR approaches but which have recently been shown to be
more robust to nonstationary noise, without requiring specific adaptation or “multi-style” training.
More specifically, we will motivate and briefly describe new approaches based on multi-stream and
subband ASR. These approaches extend the standard hidden Markov model (HMM) based approach
by assuming that the different (frequency) streams representing the speech signal are processed by
different (independent) “experts”, each expert focusing on a different characteristic of the signal, and
that the different stream likelihoods (or posteriors) are combined at some (temporal) stage to yield
a global recognition output. As a further extension to multi-stream ASR, we will finally introduce
a new approach, referred to as HMM2, where the HMM emission probabilities are estimated via
state specific feature based HMMs responsible for merging the stream information and modeling their
possible correlation.

Key words. Robust speech recognition, hidden Markov models, subband processing, multi-
stream processing.

1. Introduction. Current automatic speech recognition systems are based
on (context-dependent or context-independent) phone models described in terms
of a sequence of hidden Markov model (HMM) states, where each HMM state
is assumed to be characterized by a stationary probability density function. Fur-
thermore, time correlation, and consequently the dynamic of the signal, inside
each HMM state is also usually disregarded (although the use of delta and delta-
delta features can capture some of this correlation). Consequently, apart from the
dependencies captured via the topology of the HMM model, most time depen-
dencies are usually very poorly modeled.1 Ideally, we want to design a particular
HMM able to accommodate multiple time-scale characteristics so that we can
capture phonetic properties, as well as syllable structures, which seem to have
many attractive properties [9], including invariants that are more robust to noise.
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1This problem is not specific to the fact that phone models are generally used. Whole word
models, or syllable models, built up as sequences of HMM states will suffer from exactly the same
drawbacks, the only potential advantage of moving towards “larger” units being that one can then have
more word (or syllable) specific distributions (usually resulting in more parameters and an increased
risk of undersampled training data). Consequently, building an ASR system simply based on syllabic
HMMs will not alleviate the limitations of the current recognizers since those models will still be
based on the short-term piecewise stationary assumptions mentioned above.
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For example, acoustic features such as the modulation spectrogram2 exhibit some
correlation with syllabic features and can be used to improve state-of-the-art ASR
systems [33]. It is, however, clear that those different time-scale features will also
exhibit different levels of stationarity and will require different HMM topologies
to capture their dynamics.

There are many potential advantages to such a multi-stream approach, in-
cluding:

1. The definition of a principled way to merge different temporal knowl-
edge sources such as acoustic and visual inputs, even if the temporal
sequences are not synchronous and do not have the same data rate –
see [28] and [29] for further discussion about this.

2. The possibility to incorporate multiple time resolutions (as part of a
structure with multiple unit lengths, such as phone and syllable).

3. Multiband-based ASR [6, 14] involving the independent processing and
combination of partial frequency bands is a very particular case of multi-
stream recognition. Although this will not be explicitly discussed here,
there are many potential advantages to this multiband approach, includ-
ing (i) better robustness to speech impaired by narrowband noise, and
(ii) possibility to apply different time/frequency tradeoffs and different
recognition strategies in the subbands.

In the following, we will not discuss the underlying algorithms (“complex”
variants of Viterbi decoding, if one wants to take the possible asynchrony into
account), nor detailed experimental results (see [11] for recent results). Instead,
we will mainly discuss different combination strategies pointing towards the same
formalism.

2. Psycho-Acoustic Evidence.It seems to me that what can happen in the
future is... that experiments get harder and harder to make, more and more ex-
pensive... and scientific discovery gets slower and slower.(Richard Feynman,
1918-1988,The Character of Physical Law, Cambridge, MA, p.172.)

2.1. Product of errors rule and its interpretation. The work of Fletcher
and his colleagues (see the insightful review of his work in [1]) suggests that
human decoding of the linguistic message is based on decisions within narrow
frequency subbands that are processed quite independently of each other. Em-
pirical evidence suggests that the combination of decisions from these subbands
is done at some intermediate level and in such a way that the global error rate is
equal to the product of error rates in the subbands. In other words, if we have two
frequency bands (streams)c1 andc2, and each of them is respectively yielding
a probability of error (error rate)e(qj |x1) ande(qj |x2) for a particular classqj

and an input patternx = {x1, x2}, wherex1 andx2 represent the output features
of the two frequency streams3, the total error ratee(qj |x1, x2) resulting from the

2Initially proposed as a way to assess room acoustics [16].
3Since we decided not to deal with the temporal constraints, this notation is over-simplified. In the

case of temporal sequences,x1 andx2 will be sequences (possibly of different lengths and different
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simultaneous use of the two streams is given by:

e(qj |x1, x2) = e(qj |x1)e(qj |x2) .(2.1)

Although this conclusion is often questioned by the scientific community4, it is
probably not worth arguing too long about it since it is pretty clear that (2.1) is
anyway the optimal rule to obtain the best performance out of a (possibly noisy)
multi-stream system (but requiring theperfectknowledge of the noisy stream).
Moreover, a similar rule can usually explain some of the empirical observations
in audio-visual processing (see, e.g., [24] and [20]).

Although pretty simple, rule (2.1) is not always easy to interpret (and even
less for engineers!). So let us have a closer look at it. Since the probability of
being correct whenever we assign a particular observationx to a classq is equal
to the a posteriori probabilityP (q|x) (i.e., the probability of error is equal to
1− P (q|x), see [8], page 12)5, rule (2.1) can also be written as:

e(qj |x1, x2) = (1− P (qj |x1))(1− P (qj |x2))

= 1−
2∑

k=1

P (qj |xk) +
2∏

k=1

P (qj |xk)(2.2)

whereP (qj |xk) denotes the class posterior probabilities obtained for thek-th
input stream. Rewriting (2.2) in terms of (total) correct recognition probability
(P (qj |x1, x2) = 1− e(qj |x1, x2)), we have:

P (qj |x1, x2) =
2∑

k=1

P (qj |xk)−
2∏

k=1

P (qj |xk)(2.3)

In the case ofK streams, the above expression will have2K−1 terms, containing
all possible stream combinations.

These expressions are quite reasonable since they also reflect a standard
property of probabilities of joint events.6 Actually, this product of errors rule
tells us that the probability of correct classification on human full-band hearing is
equal to the probability that there is correct (human) classification inanysubband.
Consequently, this also means that human hearing seems capable of processing
numerous bands and selecting the one that gives correct recognition.

The resulting (very simple but nonlinear) product of errors function is il-
lustrated in Figure 1 for all possible values ofP (qj |x1) (horizontal axis) and

rates) of features, andqj will be an HMM.
4Since the relevant Fletcher experiments were done (i) with nonsense syllables only, and (ii) using

high-pass or low-pass filters (i.e., two streams) only, it is not clear whether or not this is an accurate
statement for disparate bands in continuous speech.

5See Section 3 for further evidence.
6The probability of union of two eventsP (A or B) = P (A)+P (B)−P (A, B), which is also

equal toP (A) + P (B)− P (A)P (B) if eventsA andB are independent. Indeed, in estimating the
proportions of a sequence of trials in whichA andB occur, respectively, one counts twice those trials
in which both occur.
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FIG. 1. “Optimal” classification strategy based on two (independent) observation streams yield-
ing posterior probabilitiesP (qj |x1) andP (qj |x2). The grey level represents the “total” probability
of correct recognition (with white corresponding to the maximum probability), and the different curves
represent the equal recognition probability curves (as a function ofP (q|x1) and P (q|x2)) above
which the probability of correct recognition will be higher than a prescribed value.

P (qj |x2) (vertical axis). From this figure, it is interesting to note how much
flexibility an “optimal” multi-stream system potentially has in keeping the (total)
probability of correct recognition above a certain threshold, even if one of the
streams is extremely noisy (and yields high error rates). This can indeed be mea-
sured by the area above a given equal recognition rate curve. For example, for
P (qj |x1, x2) = 0.9, nearly one third of the space is available! It is clear that this
property cannot be achieved by using the usual product of likelihoods, where if
one of the likelihoods is poorly estimated, the whole product is deteriorated.7

This conclusion remains valid for more than two streams. Actually, it can
even be shown that the area above a given equal error rate (multi-dimensional)
surface is growing exponentially with the number of streams. To make the link
easier with what will come in the sequel of this paper, it is easy to show that, in
the case of three input streams, (2.3) becomes:

P (qj |x1, x2, x3) =
3∑

k=1

P (qj |xk) +
3∏

k=1

P (qj |xk)

−
3∑

`>k=1

P (qj |xk)P (qj |x`)(2.4)

7On top of the fact that it is usually difficult to compare/combine likelihoods computed from
features in different spaces, possibly of different dimensions (since likelihoods, as usually computed
(assuming Gaussian densities with diagonal covariance matrices), are “dimensional”, i.e., depend on
the dimension of the feature space).
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Obviously, this reflects a “perfect” world. In actual engineering systems though
the posterior probabilitiesP (qj |xk) will have to be estimated on the basis of a set
of parametersΘ, and, in the case of two streams, (2.3) should be written:

P (qj |x1, x2, Θ)

=
2∑

k=1

P (qj |xk, Θ)−
2∏

k=1

P (qj |xk, Θ)(2.5)

Figure 1 does not change, but the position in the space depends onΘ, as well
as on the different stream features. Ideally, robust training and adaptation should
be performed in theΘ space to guarantee thatP (qj |x1, x2,Θ) is always above
a certain threshold, or to directly maximize (2.5). In the following, we discuss
approaches going in that direction.

2.2. Discussion.The above analysis allows us to draw a few conclusions
and to design the features of an “optimal” ASR system:

1. Human hearing performs combination of frequency streams according
to the product of errors rule discussed above. In this case (and assuming
that the subbands are independent, which is false), correct classification
of any subband is empirically equivalent to correct full-band classifica-
tion. In subband-based ASR systems, this means that we should design
the system and the training criterion to maximize the classification per-
formance on subbands, while also making sure that the subband error
rates are independent.

2. As a direct consequence of the above, it is also obvious that the more
subbands we use, the higher the full-band correct classification rate will
be. As done in human hearing,ASR systems should thus use a large
number of subbandsto have a better chance to increase recognition rates.
It is interesting to note here that this trend has recently been followed
in [15].

3. In order to estimate the reliability of each stream,ASR systems should be
able to estimate subband posteriors as accurately as possible.We will
show in the next section that this is not impossible.

4. If ASR systems can reliably estimate local posteriors, we can imple-
ment the product of errors rule, which should guarantee the minimum
of errors (if the above conditions are satisfied). Furthermore, each time
we improve the classification rate inany subband, the recognition rate
should improve.

3. Estimating Posteriors. The purpose of models is not to fit the data but
to sharpen the questions.(Samuel Karlin, 1923-, 11th R.A. Fisher Memorial
Lecture, Royal Society, 20 April 1983.)

From the discussion above, it seems clear that we should work on the basis of a
posteriori probabilities8. Given that we often work in the framework of hybrid

8Which are known, anyway, to yield the minimum error rate solution.
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HMM/ANN systems [5] (using artificial neural networks (ANN) for estimating
local posterior probabilities which are transformed into scaled likelihoods used
as HMM emission probabilities), and although some of the arguments below will
also be valid for likelihood-based systems, we will focus our discussion on poste-
riors.
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FIG. 2. It is possible to generate “good” posterior probabilities out of a neural network, and
these are indeed good measures of the probability of being correct. This plot was generated on real
speech data by collecting statistics over the acoustic parameters from 1750 Resource Management
speaker-independent training sentences and 500 cross-validation sentences (not used for training, but
for which correct classification was known).

As initially reported in [5], Figure 2 illustrates the fact that ANN can reliably
estimate local posterior probabilitiesP (qj |x). Indeed, recalling the properties of
posterior probabilities discussed in the previous section, good estimates of poste-
rior probabilities should also be a measure of the fraction of correct classification.
Consequently, when representing the correct classification rate as a function of
the posterior probabilities as estimated at the output of a neural network, the ideal
Bayes (posterior-based) classifier would yield a diagonal, which is quite the case
for both the training data and the cross-validation data (not used for training, but
for which correct classification was known).

Dividing these local posterior probabilities by the prior probabilitiesP (qj)
as estimated on the training set, yields scaled local likelihoods that can be used to
compute [12]

P (M |X)
P (M)

=
P (X|M)

P (X)
(3.1)

whereM represents a complete HMM (modeling a particular sub-unit, a word, or
a sentence) composed of several units computingp(qj |x)

p(qj)
, andX an observation

sequence associated withM . This can then be simply multiplied (as in usual
HMMs) by P (M) to include external knowledge sources (such as a language
model).
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4. Multi-Stream and Mixture of Experts. From an engineering perspec-
tive, one way to introduce the multi-stream formalism in a pattern classification
(such as ASR) task is to use the approach of mixture of experts, as proposed in
the framework of neural networks [4]. The general idea of mixture of experts is to
process the (same) input space according to different linear or nonlinear (neural
network) functions (“experts”), and to combine the outputs of each expert ac-
cording to a weighted sum, and where the weights also result from a (linear or
nonlinear) function of the input patternx.
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FIG. 3. Posterior-based mixture of experts. Experts (e.g., neural networks) are extracting their
own posterior estimates, which are then combined through weights also estimated (by the “gating
network”) from the data. These weights could also be adapted online.

Typically, this approach (as for HMMs) can be formulated in terms of latent
variables (where the missing variable is the expert sequence). As illustrated in
Figure 3, letM represent the hypothesized model (HMM) associated with an
input sequenceX. If E = {E1, . . . , Ek, . . . , EK} represents a set ofmutually
exclusive and exhaustiveexperts9 (and whereP (Ek) is defined as the probability
thatEk is the most reliable expert), thenP (M |X) can be estimated as:

P (M |X) =
K∑

k=1

P (M, Ek|X)

=
K∑

k=1

P (M |Ek, X)P (Ek|X)

'
K∑

k=1

P (Mk|Xk)P (Ek|X)(4.1)

whereXk represents the respective inputs of expert/functionEk
10, Mk the model

for the speech unitM used to processXk, andP (Ek|X) the (relative) reliability

9As discussed later, the initial multi-stream approach (Section 5.1) was not using strictly exhaus-
tive experts since they did not cover all possible stream combinations. The full combination approach,
as discussed in Section 5.3, will actually use all possible combinations.

10In the case of multi-stream inputs,Xk will typically be a subset ofX (containing the features
relative toEk).



8 HERVE BOURLARD, SAMY BENGIO, KATRIN WEBER

of expertEk given the whole input.11 The approximations in (4.1) result from the
assumptions that (i) the probability of a modelM given a particular expertEk is
only estimated from the sub-modelMk associated with the expert, and (ii) that
expert-specific model is only looking at its specific input features. The segment-
based posteriors in (4.1) can be computed as briefly recalled in Section 3.

Mj
k

1
jM

Mj
K

Mj+1
1

Mj+1
k

Mj+1
K

= Recombination at the sub-unit level

FIG. 4. General form of aK-streams recognizer with anchor points between speech units (to
force synchrony between the different streams). Note that the model topology is not necessarily the
same for the different sub-systems.

Ideally, as discussed in [6, 14, 29] and illustrated in Figure 4, the expert com-
bination presented above should take place at the level ofM , i.e., at the level of
the particular (non-emitting) states denoted “

⊗
”. However, this is not trivial and

will often require a significant adaptation of the recognizer. It is only in the case
of segment likelihoods combination (by products) that one can develop a tractable
solution to this optimization problem. Indeed, in this particular case, it is easy to
show that the product of segment-based, expert-specific, likelihoods can be dis-
tributed through local likelihood products of an equivalent 1st order HMM, pos-
sibly after some modification of the transition probabilities [32]. This algorithm,
referred to as “HMM combination”, is an adaptation of the HMM decomposition
algorithm presented in [30].

In the case of more complex (non linear) combination criteria, like in the case
of mixture of experts or the approach discussed is section 5 (related to the mixture
of experts model and the psycho-acoustic evidence discussed in Section 2), HMM
combination/decomposition is no longer a tractable solution. Other approaches
based on the 2-level dynamic programming algorithm or using (4.1) to rescore an
N-best list of hypotheses (providing us with a set of possible segmentation/anchor
points) have then to be used.

Although it is clear that:
1. The empirical results discussed in Section 2 were obtained on the basis

of segments (non-sense syllables),
2. only the segment level combination can allow for asynchrony between

the streams12,

11Since, as illustrated in Figure 4, each sequenceXk will be processed with a different/specific
HMM.

12Although not using the nonlinear (optimal?) combination functions discussed in this paper,
preliminary results presented in [6, 14] suggested that asynchrony was not a major factor — see,
though, [21] and [29] for further discussion about this.



TOWARDS ROBUST AND ADAPTIVE SPEECH RECOGNITION MODELS 9

we will mainly focus, in the sequel of this paper, on the combination at the state
level.

5. Multiband-based ASR with Latent Variables.

5.1. General Formalism. As a particular case of multi-stream processing,
we have been investigating an ASR approach based on independent processing
and combination of frequency subbands. The general idea, as illustrated in Fig. 5,
is to split the whole frequency band (represented in terms of critical bands) into
a few subbands on which different recognizers are independently applied. The
resulting probabilities are then combined for recognition later in the process at
some segmental level (here we consider the state level). Starting from critical
bands, acoustic processing is now performed independently for each frequency
band, yieldingK input streams, each being associated with a particular frequency
band.

Recombined
Result

HMM/ANN
Sub-Recognizer

HMM/ANN
Sub-Recognizer

HMM/ANN
Sub-Recognizer

Acoustic Processing

Acoustic Processing

Acoustic Processing

RecombinationAcoustic

Frequency band K

Frequency band 1

Frequency band k

FIG. 5. Typical multiband-based ASR architecture. In multiband speech recognition, the fre-
quency range is split into several bands, and information in the bands is used for phonetic probability
estimation by independent modules. These probabilities are then combined for recognition later in the
process at some segmental level.

In this case, each of theK sub-recognizers (streams) is now using the infor-
mation contained in a specific frequency bandXk = {xk

1 , xk
2 , . . . , xk

n, . . . , xk
N},

where eachxk
n represents the acoustic (spectral) vector at timen in the k-th

stream. In (4.1),P (Mk|Xk) represents the a posteriori probability of a sub-
modelMk (k-th frequency band model forM ) and can be estimated from local
posteriorsP (qk

j |xk
n) (e.g., estimated at the output of an ANN), whereqk

j denotes
a statej of modelMk). P (Ek|X) represents the “reliability” of expertEk, work-
ing on thek-th frequency band, and can be estimated in different ways (e.g., based
on SNR).

As discussed in the previous section, combination at the segment level ac-
cording to the criteria discussed here is not easy. However, combination at the
HMM-state level, by combining local posteriorsP (qk

j |xk
n), can be done in many

ways [6], including untrained linear or trained linear (e.g., as a function of auto-
matically estimated local SNR) functions, as well as trained nonlinear function
(e.g., by using a neural network). This is pretty simple to implement and amounts
to performing a standard Viterbi decoding in which local (log) probabilities are
obtained from a linear or nonlinear combination of the local subband probabili-
ties. For example, in the initial subband-based ASR, local posteriorsP (qj |xn)
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(or scaled likelihoods) were estimated according to:

P (qj |xn) =
K∑

k=1

wkP (qj |xk
n,Θk)(5.1)

where, in our case, eachP (qj |xk
n, Θk) is computed with a band-specific ANN

of parametersΘk and withxk
n (possibly with temporal context) at its input. The

weighting factors can be assigned a uniform distribution (already performing very
well [6]) or be proportional to the estimated SNR. Over the last few years, sev-
eral results were reported showing that such a simple approach was usually quite
robust to band limited noise.

In Section 5.3 below, we discuss a new approach that was recently developed
at IDIAP, and presented in [3, 11, 23], and show (i) how it significantly enhances
the baseline multiband approach, and (ii) how it relates to the above discussions
(and psycho-acoustic evidence).

5.2. Motivations and Drawbacks. The multiband approach has several po-
tential advantages, which are briefly discussed here.

Better robustness to band-limited noise— The signal may be impaired (e.g.,
by noise, stream characteristics, reverberation,...) only in some specific frequency
bands. When recognition is based on several independent decisions from differ-
ent frequency subbands, the decoding of a linguistic message need not be severely
impaired, as long as the remaining clean subbands supply sufficiently reliable in-
formation. This was confirmed by several experiments (see, e.g., [6]). Surpris-
ingly, even when the combination is simply performed at the HMM state level, it
is observed that the multiband approach is yielding better performance and noise
robustness than a regular full-band system.13

Similar conclusions were also observed in the framework of the missing fea-
ture theory [19, 22]. In this case, it was shown that,if one knows the position of the
noisy features, significantly better classification performance could be achieved
by disregarding the noisy data (using marginal distributions) or by integrating
over all possible values of the missing data conditionally on the clean features —
See Section 5.3 for further discussion about this. In the multiband approach, we
do not try to explicitly identify the noisy band (and to disregard it). Instead, we
process all the subbands independently (to avoid “spreading” the noise across all
components of the feature vector or in the local probability estimate) and recom-
bine them according to a particular weighting scheme that should de-emphasize
(or cancel out) the noisy bands.

13It could however be argued that, in this case, the multiband approach boils down to a regular
full-band recognizer in which several likelihoods of (assumed) independent features are estimated and
multiplied together to yield local likelihoods (since, in likelihood based systems, expected values for
the full-band is the same than the concatenated expected values of subbands). This is however not
true when using posterior based systems (such as hybrid HMM/ANN systems) where the subbands
are presented to different nets that are independently trained in a discriminant way on each individual
subband. Finally, as discussed in this paper, we also believe that the combination criterion should be
different than a simple product of (scaled) likelihoods or posteriors.
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Better modeling — As for a regular full-band system, it was shown in [6] that
all-pole modeling was significantly improving the performance of multiband sys-
tems. However, as an additional advantage of the subband approach, it can be
shown or argued that:

1. This all-pole modeling may be more robust if performed on several sub-
bands (low dimensional spaces) than on the full-band signal [27].

2. Since the dimension of each (subband) feature space is smaller, it is eas-
ier to estimate reliable statistics (resulting in a more robust parameteri-
zation).

Stream asynchrony— Transitions between more stationary segments of speech
do not necessarily occur at the same time for the different frequency bands [21],
which makes the piecewise stationary assumption more fragile. The subband ap-
proach may have the potential of relaxing the synchrony constraint inherent in
current HMM systems.

Stream specific processing and modeling— Different recognition strategies
might ultimately be applied in different subbands. For example, different time/fre-
quency resolution tradeoffs could be chosen (e.g., time resolution and width of
analysis window depending on the frequency subband). Finally, some subbands
may be inherently better for certain classes of speech sounds than others.

Major objections and drawbacks— There are a few, related, drawbacks to this
multiband approach [21]:

1. One of the common objections to this separate modeling of each fre-
quency band has been that important information in the form of corre-
lation between bands may be lost. Although this may be true, several
studies [21], as well as the good recognition rates achieved on small
frequency bands [10, 15], tend to show that most of the phonetic infor-
mation is contained in each frequency band (possibly provided that we
have enough temporal information)14.

2. To define and independently process frequency bands, it is obviously
necessary to start from spectral coefficients (critical bands), which, how-
ever, are not orthogonal and do not permit competitive performance for
clean speech. In standard ASR systems, these coefficient are typically
orthogonalized using a DCT (cepstral) transformation. Even in the case
of ANN probability estimation (where ANN is supposed to extract and
model the correlation across coefficients), it has been observed that or-
thogonalization of the features still helped a bit. However, in the case
of narrowband additive noise, we obviously want to subtract as much as
possible of the noise before the DCT transform to avoid spreading the
noise across all the feature components. For subband ASR systems, a

14And, indeed, the discussion in Section 2, as well as many other psycho-acoustic experiments,
seem to suggest that human hearing can actually extract a lot of phonetic/syllabic information from
band limited signals.
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partial but effective solution to this problem consists in performing an
independent DCT in each subband [6, 26].
Alternative solutions to this problem have recently been proposed in
which it is attempted to decorrelate as much as possible the filter-bank
energies — see, e.g., [18, 7, 25]. This is usually obtained by performing
some kind of temporal filtering (and, consequently, spreading the pos-
sible noise over time instead of over frequency) or frequency filtering
(and consequently spreading the possible noise over a limited frequency
range only).

3. As opposed to the empirical evidence discussed in Section 2, the initial
subband-based ASR system did not make use of all possible subband
combinations. This will be fixed by the method presented next.

5.3. Full Combination Subband ASR. Following the above developments
and discussions, it seems reasonable to assume that a subband ASR system should
simultaneously deal with all theL = 2K possible subband combinationsS` (with
` = 1, . . . , L, including the empty set15) resulting from an initial set ofK fre-
quency (critical) bandsxk. However, while it is pretty easy to quickly estimate
any subband likelihood or marginal distribution when working with Gaussian or
multi-Gaussian densities [19], this is harder when using ANN to estimate poste-
rior probabilities. In this latter case, indeed, it would be necessary to train (and
run, during recognition)2K neural networks, which would become very quickly
intractable.

In the following, we briefly present the solution recently proposed in [11]
and [23], and discuss its relationships with the themes developed in the current
paper.

Ideally, we would thus like to compute the posterior probabilities for each
of the L = 2K possible combinationsS`

n (including all possible single bands,
pairs of bands, triples, etc) of theK subbandsxk

n. Indeed, since we do not know a
priori where the noise is located, we should integrate over all possible positions16.
Using the formalism of mixture of experts, we can thus write:

P (qj |xn, Θ) =
L∑

`=1

P (qj , E`|xn, Θ)

=
L∑

`=1

P (qj |E`, xn, Θ)P (E`|xn)

=
L∑

`=1

P (qj |S`
n, Θ`)P (E`|xn)(5.2)

15Which would correspond to the case where all the bands are unrealiable. In this case, the best
posterior estimate is the prior probabilityP (qj), and one of theL terms in the following equations
will contain only this prior information.

16This amounts to assuming that the position of the noise or, in other words, the position of the
reliable frequency bands, is a hidden (latent) variable on which we will integrate to maximize the
posterior probabilities (in the spirit of the EM algorithm).
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whereΘ represents the whole parameter space, whileΘ` denotes the set of (ANN)
parameters used to compute the subband posteriors. Of course, implementation
of (5.2) requires the training ofL neural networks to estimate all the posteriors
P (qj |S`

n,Θ`) that have to be combined according to a weighted sum, with each
weight representing the relative reliability of a specific set of subbands. In the
case of stationary interference, this reliability could be estimated on the basis
of the average (local) SNR in the considered set. Alternatively, it could also be
estimated as the probability that the local SNR is above a certain threshold, and
where the threshold has been estimated to guarantee a prescribed recognition rate
(e.g., lying above a certain equal recognition rate curve in Figure 1) [3].

Typically, training of theL neural nets would be done once and for all on
clean data, and the recognizer would then beadaptedonline simply by adjusting
the weightsP (E`|xn) (still representing a limited set ofL weights) to increase
the global posteriors. This adaptation could be performed by online estimation
of the SNR or by an online version of the EM (deleted-interpolation) algorithm.
Although this approach is not really tractable, it has the advantage of avoiding
the independence assumption between the subbands of a same set, as well as al-
lowing any DCT transformation of the combination before further processing.
Consequently, this combination, referred to asFull Combination, was actually
implemented [10] for the case of four frequency subbands (each containing sev-
eral critical bands), thus requiring the training of 16 neural nets, and used as an
“optimal” reference point.

An interesting approximation to this “optimal” solution though consists in
simply train one neural network per subband for a total ofK models, and to
approximate all the other subband combination probabilities directly from these.
In other words, re-introducing the independence assumption17 between subbands,
subband combination posteriors would be estimated as [10, 11]:

P (qj |S`
n,Θ`) = P (qj)

∏

k∈S`

P (qj |xk
n,Θk)

P (qj)
(5.3)

Experimental results obtained from this approximated Full Combination ap-
proach in different noisy conditions are reported in [10, 11], where the perfor-
mance of this above approximation was also compared to the “optimal” estima-
tors (5.2). Interestingly, it was shown that this independence assumption did not
hurt us much and that the resulting recognition performance18 was similar to the
performance obtained by training and recombining all possibleL nets (and signif-
icantly better than the original subband approach). In both cases, the recognition
rate and the robustness to noise were greatly improved compared to the initial sub-
band approach (5.1). This further confirms that we do not seem to lose “critically”
important information when neglecting the correlation between bands.

17Actually, it is shown in [10, 11] that we only need to introduce a weak (conditional) indepen-
dence assumption.

18Obtained on the Numbers’95 database, containing telephone-based speaker independent free
format numbers, on which NOISEX noise was added.
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Finally, it is particularly interesting to note here that using (5.3) in (5.2)
yields something very similar to the “optimal” product of errors rule (2.4) ob-
served empirically:

P (qj |xn, Θ) =
L∑

`=1

P (E`|xn)
C`

∏

k∈S`

P (qj |xk
n, Θk)(5.4)

with C` = P (n`−1)(qj), andn` being the number of subbands inS`. In [10], it
is shown that this normalization factor is important to achieve good performance.
This Full Combination rule thus takes exactly the same form than the product
of errors rule [such as (2.4) or (2.5)], apart from the fact that the weighting fac-
tors are different. In (5.4), the weigthing factors can be interpreted as (scaled)
probabilities estimating the relative reliability of each combination, while in the
product of errors rule these are simply equal to+1 or−1. Another difference is
that the product of errors rule involves2K − 1 terms while the Full Combination
rule involves2K terms, one of them representing the contribution of the prior
probability.

In the next section, we discuss a further extension of this approach where the
segmentation into subbands is no longer done explicitly, but is achieved dynami-
cally over time, and where the integration over all possible frequency segmenta-
tions is part of the same formalism.

6. HMM2: Mixture of HMMs. All HMM emission probabilities discussed
in the previous models are typically modeled through Gaussian mixtures or arti-
ficial neural networks. Also, in the multiband based recognizers discussed above,
we have to decidea priori the number and position of the subbands being con-
sidered. As also briefly discussed above, it is not always clear what the “opti-
mal” recombination criterion should be. In the following, we introduce a new
approach, referred to as HMM2, where the emission probabilities of the HMM
(now referred to as “temporal HMMs”) are estimated through a secondary, state-
dependent, HMM (referred to as “feature HMMs”) specifically working along the
feature vector. As briefly discussed below (see references such as [2] and [31] for
further detail), this model will then allow for dynamic (time and state dependent)
subband (frequency) segmentation as well as “optimal” recombination accord-
ing to a standard maximum likelihood criterion (although other criteria used in
standard HMMs could also be used).

In HMM2, as illustrated in Figure 6, each temporal feature vectorxn is con-
sidered as a fixed length sequence ofS componentsxn = (x1

n, .., xS
n), which is

supposed to have been generated at timen by a specific feature HMM associ-
ated with a specific stateqj of the temporal HMM. Each feature HMM staterl is
thus emitting individual feature componentsxs

n, whose distributions are modeled
by, e.g., one dimensional Gaussian mixtures. The feature HMM thus looks at
all possible subband segmentations and automatically performs the combination
of the likelihoods to yield a single emission probability. The resulting emission
probability can then be used as emission probability of the temporal HMM. As an
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alternative, we can also use the resulting feature segmentation in multiband sys-
tems or as additional acoustic features features in a standard ASR system. Indeed,
if HMM2 is applied to the spectral domain, it is expected that the feature HMM
will “segment” the feature vector into piecewise stationary spectral regions, which
could thus follow spectral peaks (formants) and/or spectral valley regions.

In the example illustrated in Figure 6, the HMM2 is composed of a temporal
HMM that handles sequences of features through time, and feature HMMs as-
signed to the different temporal HMM states. The temporal HMM is composed
of 3 left-to-right connected states (q1, q2 and q3), while the state-specific fea-
ture HMM is composed of 4 (“top-down”) states (r1, r2 r3 andr4). Although
not reflected in Figure 6, each feature HMM{r1, r2, r3, r4} is specific to a tem-
poral HMM state (emission probability distribution), with different parameters,
and possibly different HMM topologies. More formally, as done in [2] and [17],
the feature state should have been denotedrk

j , with k representing the associated
temporal state index andj the feature state index.
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FIG. 6. HMM2: the emission dis-
tributions of the temporal HMM are es-
timated by secondary, state-specific, fea-
ture HMMs.

r1

r2

r3

r4

q3q1 q2

FIG. 7. Frequency filtered filterbanks and
HMM2 resulting (Viterbi) segmentation for a test ex-
ample of phoneme“w” .

Of course, the topology of the feature HMM, extracting the correlation infor-
mation withing feature vectors, could take many forms, including ergodic HMMs
and/or topologies with a number of states larger the number of feature compo-
nents, in which case “high-order” correlation information could be modeled. In
the following though, we constrained the feature HMM to a strictly “top-down”
topology. Moreover, since we were interested in extracting information in the
spectral domain and in possible relationships with multiband ASR systems, we
considered features in the spectral domain. Each of the feature HMM states is
then supposed to model one of theK frequency bands, where the positions and
bandwidths of these bands are determined dynamically.
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In [2], we introduced an EM algorithm to jointly train all the parameters
of such an HMM2 in order to maximize the data likelihood. This derivation is
based on the fact that an HMM is a special kind of mixture of distributions, and
therefore HMM2, as a mixture of HMMs, can be considered as a more general
kind of mixture distribution. During decoding, the Viterbi algorithm is used to
find the path through the HMM2 which best explains the input data. Local state
likelihoods of the temporal HMM can however be estimated using either Viterbi
or the complete likelihood calculation, summing over all possible paths through
the feature HMM:

p(xn|qj) =
∑

R

P (r0|qj)
S∏

s=1

p(xs
n|rl, qj)P (rl|rl−1, qj)(6.1)

whereqj is the temporal HMM state at timen, rl the feature HMM state at fea-
ture s, R the set of all possible paths through the feature HMM,P (r0|qt) the
initial state probability of the feature HMM,p(xs

n|rl, qj) the probability of emit-
ting feature componentxs

n while in feature HMM staterl of temporal stateqj ,
andP (rl|rl−1, qj) the transition probabilities of the feature HMM in temporal
stateqj .

We believe that HMM2 (which includes the classical mixture of Gaussian
HMMs as a particular case) has several potential advantages, including:

1. Better feature correlation modeling through the feature HMM topology
(e.g., working in the frequency domain). Also, the complexity of this
topology and the probability density function associated with each state
easily control the number of parameters.

2. Automatic non-linear spectral warping. In the same way the conven-
tional HMM does time warping and time integration, the feature-based
HMM performs frequency warping and frequency integration.

3. Dynamic formant trajectory modeling. As further discussed below, the
HMM2 structure has the potential to extract some relevant formant struc-
ture information, which is often considered as important to robust speech
recognition.

To illustrate these advantages and the relationship of HMM2 with dynamic
multi-band ASR, we trained all parameters of an HMM2, using frequency filtered
filterbank features [25]. We employed the HMM2 topology as shown in Figure 6.
Training was done with the EM algorithm, and decoding was performed using
the Viterbi algorithm for both the temporal and the frequency HMM. Figure 7
illustrates (on unseen test data) the temporal and frequency segmentation obtained
as a by-product from Viterbi, plotted onto a spectrogram of our features. At each
time step, we kept the 3 positions where the feature HMM changed its state during
decoding (for instance, at the first time frame, the feature HMM goes from state
r1 to stater2 after the second feature). We believe that this segmentation gives
cues about some structures of the speech signal such as formant positions. In
fact, in [31] it has been shown that this segmentation information can be used as
(additional) features for speech recognition, being (1) discriminant and (2) rather
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robust in the case of speech degraded by additive noise.

7. Conclusions. In this paper, we have discussed a family of new ASR ap-
proaches that have recently been shown to be more robust to noise, without re-
quiring specific adaptation or “multi-style” training.

From all this discussion, and the convergence of independent experiments,
we can draw the following preliminary conclusions:

1. Multiband ASR does not seem to be inherently inferior to a full-band
approach, although some correlation information is lost due to the divi-
sion of the frequency space into subbands.19 Furthermore, it is not clear
either that human hearing is using this kind of correlation information.

2. When training subband systems, we should not aim at maximizing the
classification performance for every subband. When using the right com-
bination rule, it should be better to increase the number of subbands
while making sure that at any time at least one subband will be guessing
the right answer.20

3. Doing this, we should also look at the potential for improvement in sub-
band modeling when combining longer time-scale information streams
(trading frequency information for temporal information).

4. The full combination approach discussed here has the potential of pro-
viding us with new adaptation schemes in which only the combination
weights are automatically adapted (e.g., according to an online EM al-
gorithm).

Finally, it is clear that several key problems remain to be addressed, including:
1. Need for improved expert weighting
2. Need for methods which are robust to noise but still perform well for

clean speech.
In subband processing, there is also a need to properly choose the frequency

subband, and it is expected that those subbands should be dynamically defined,
e.g, following some formant structure. In this respect, the HMM2 formalism
also presented here can be considered as a generalization of subband approaches,
allowing for optimal (according to a maximum likelihood criterion) subband seg-
mentation and recombination.
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