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Abstract. The recognition of events within multi-modal data is
a challenging problem. In this paper we focus on the recognition
of events by using both audio and video data. We investigate the
use of data fusion techniques in order to recognise these sequences
within the framework of Hidden Markov Models (HMM) used to
model audio and video data sequences. Specifically we look at the
recognition of play and break sequences in football and the segmen-
tation of football games based on these two events. Recognising
relatively simple semantic events such as this is an important step
towards full automatic indexing of such video material. These ex-
periments were done using approximately 3 hours of data from two
games of the Euro96 competition. We propose that modelling the
audio and video streams separately for each sequence and fusing
the decisions from each stream should yield an accurate and robust
method of segmenting multi-modal data.

INTRODUCTION

With the rapid growth in the amount of multi-modal data being generated
there is a need for reliable systems to automatically annotate such data. In
this paper we focus on the recognition of events by using both audio and video
data. Specifically we look at the recognition of play and break sequences in
football and the segmentation of football games based on these two events.
Play is defined as the ball being in normal play and break is when play has
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ceased for some reason such as, a foul, the ball going out of the field or a
goal.

The segmentation of football into play and break sequences is an impor-
tant task. Given the huge amount of video material current being generated
manually indexing this material is prohibitively time consuming and expen-
sive. Therefore it is important to develop an accurate and efficient technique
for automatically indexing this material. In the data we have used break con-
stituted 45 percent of the total time, so a segmentation into play and break
provides a significant information reduction. It should be noted that in our
approach to the problem of segmenting play and break, we have not based the
segmentation on shot boundaries. This is important because play and break
are semantic classifications that do not always adhere to shot boundaries.
It is often the case that a play or break sequence will run over a number of
shots and, more importantly, it is sometimes the case that a single shot will
contain both play and break sequences.

The video data we are concerned with here is composed of two streams,
audio and video. While some work has been done on the recognition of events
within video material, this has usually focused on using either the audio or
video stream in isolation. Some work has been done on the classification of
television broadcast genres using the audio stream alone [5] [11]. However
work in this area has concentrated on classification using the video stream.
Peng Xu et al [15] have proposed a rule based system using video informa-
tion for play/break segmentation of football. This work was extended to use
Hidden Markov Models (HMMs) to model the play and break sequences and
a dynamic programming algorithm to perform the segmentation [13]. HMMs
have also been trained using video motion information in order to recognise
events in basketball [14]. HMMs have been used with audio and video fea-
tures in a scene classification task [7] and a video shot segmentation task [2].
A good review of techniques for the analysis of multi-modal data is provided
by Wang, Liu and Huang [16].

In our approach we introduce the use of data fusion techniques into an
HMM event recognition framework. Based on results of using multi-modal
features in other fields, such as audio-visual speech recognition [6], we believe
the fusion of multiple streams of data will improve both the accuracy and the
robustness of the system. We will investigate the use of data fusion by low
level feature vector concatentation, early fusion, and also by the high level
combination of the decisions from each data stream, late fusion. In this case
we use audio and video features as the data streams. In the next section we
discuss the audio and video features to be used in our experiments. Next
we introduce the methods we used for modelling multi-modal sequences. We
then present the results of experiments comparing the performance of these
various methods on the same data set.



AUDIO AND VIDEO FEATURES

A low level set of audio and video features were selected to be used in these
experiments. These low level features were selected so as to demonstrate the
generality of the technique we propose to use. This differs from the approach
of developing a higher level set of features specifically for the task of event
recognition in football games.

The visual features Xt
v at time t are based on motion, and were used in

this experiment to characterise the dominant motion model over the entire
image field of view. More precisely, let dΘ(p) denotes the displacement at
position p ∈ R between two consecutive images It and It+1. Θ denotes
the parameters of the motion model, in this case an affine model, and R
denotes the set of valid (real valued) image coordinates. The parameters of
the dominant motion are first estimated using a robust estimator [10] that
allows for outliers in the data. This estimation leads to the definition of
a support region RΘ̂ that contains the image points that agree with the
dominant motion, usually the background pixels. It is given by :

RΘ̂ = {p1 ∈ R/p2 = p1+dΘ̂(p1) ∈ R and |It+1(p2)−It(p1)| < Thresh} (1)

The first motion measure Xt
v(1) = dζ characterises how well the estimated

global motion model, which usually captures the image displacements that
are due to the camera motion (panning, zooming etc), can actually model the
displacement of points between two consecutive frames. It is defined as the
ratio |RΘ̂|

|R| , where | · | denotes cardinality. The second measure corresponds to
the average of the motion amplitude, computed using the estimated motion
model and over the entire image field of view, that is :

Xt
v(2) =

1
|R|

∑

p∈R
‖dΘ̂(p)‖

The third feature is a ratio of the likelihood of no background motion and
the likelihood of background motion, and can be shown to be given by [3] :

Xt
v(3) ∝ ln

(
σ2

Θ̂

σ2

)
with σ2

Θ̂
= V ar(It+1(p + dΘ̂(p))− It(p), p ∈ RΘ̂) (2)

and σ2 = V ar(It+1(p)− It(p), p ∈ RΘ̂). These video features were extracted
at the standard PAL video frame rate of one frame every 40ms.

The audio signal extracted from the broadcast tapes contained only sounds
associated with the football game, such as the crowd cheering, the referee’s
whistle and the sound of the ball being kicked. In order to characterise this
audio stream, 12 LPC Cepstral coefficients with the log energy, delta and
acceleration coefficients were extracted from the raw audio signal. These are
a set of robust audio features commonly used in speech recognition and in
other audio recognition tasks [12], delta being the first temporal derivative of
the signal and the acceleration being the second derivative. These features



were included in order to characterise the dynamics of the signal. The audio
features were extracted every 10 ms using a window size of 25 ms.

This produces two streams of data, Xv the video stream and Xa the audio
stream. We have sampled them at the standard sampling rates for each mode,
audio at 100 times per second and video at 25 times per second.

MULTI-MODAL SEQUENCE RECOGNITION

The most common method currently used to model sequences of data are
Hidden Markov Models (HMMs) [12]. HMMs are a statistical method of
modeling temporal relations in sequences of data. The data is characterised
as a parametric stochastic process and the parameters of this process are
automatically estimated from the data. The data sequence is factorised over
time by a number of hidden states N and emissions from these states. The
emission from each state is probabilistic and depends only on the current
state. HMM training can be carried out using the Expectation-Maximisation
(EM) algorithm and sequence decoding and recognition using the Viterbi
algorithm [12]. When used in classification tasks a separate HMM is trained
for each class to be recognised. So if we have m classes (k1, . . . , km) and data
X then during recognition the classification is given by finding the model M
that maximises the probability of the model given the data P (M |X). So the
selected class is

k∗ = arg max
k

P (Mk|X). (3)

Using Bayes rule and assuming an equal prior on the class we get

k∗ = arg max
k

p(X|Mk). (4)

The fusion of redundant information from different sources can reduce
overall uncertainty and increase the accuracy of a classification system. Fu-
sion can take place at different stages in the recognition process. In early
fusion techniques the data is combined and then recognition is performed on
this combined data. The most common method of early fusion is to concate-
nate the feature vectors from the different modes. This technique involves
aligning and synchronising the data so as to form one combined data stream.
In the case of audio and video streams, the audio data Xa, and the video data
Xv are concatenated to form a single audio-video data stream Xav. A single
HMM is then trained for each class using this concatenated stream. Given
that audio and video are usually sampled at different rates, this involves sub-
sampling or oversampling one of the streams in order to synchronise them.
In this case the selected class is

k∗ = arg max
k

p(Xav|Mk). (5)

This early fusion approach, however, does not allow for asynchronicity and
differences in temporal structure between the different modalities.



One solution when this assumption of state synchronicity cannot be made
for the data is the use of a late fusion technique in which separate HMMs
are independently trained for each class using the data from each stream of
data. So if we have J streams of data and M classes the number of HMMs
is J ×M . The decisions from each of these independent HMM classifiers is
then combined to produce a classification of the sequence. In this late fusion
technique, decisions take the form of some sort of score or classification of
each stream, for example a posterior probability or log likelihood. One way of
combining these decisions when they represent likelihoods and are assumed
to be independent given the model is by using the product rule

k∗ = arg max
k

J∏

j=1

p(Xj |Mk). (6)

A comprehensive review of methods for combining classifiers is provided by
Kittler et al [8].

In order to implement this late fusion approach we model the audio and
video separately and then combine the likelihoods from each stream. We
also introduce a weighting factor ω on the likelihoods from each stream. The
likelihood outputs from the audio model and the video model are combined
according to:

p(X|Mk) = p(Xa|Mak)ω.p(Xv|Mvk)(1−ω), (7)

where p(Xa|Mak) is the likelihood of the audio stream given the audio model,
p(Xv|Mvk) is the likelihood of the video stream given the video model and ω
is the weighting factor on the streams.

EXPERIMENTS

The data used in these experiments was provided by the BBC sports library
under the European Union Information Society Technology (EU IST) project
ASSAVID. This data consists of approximately 171 minutes of football from
the Euro96 competition: approximately 94.30 minutes of play and 76.61 min-
utes of break. This was made up of two games, the first game England vs
Switzerland and the second game Italy vs Czech Republic. As was noted in
the introduction the data was labelled on a semantic basis and not on the
basis of shots and shot boundaries. The length of play and break sequences
was extremely variable. The play sequences had a mean length of 19.53 sec-
onds with a variance of 302.73 and the break sequences had a mean length
of 14.27 seconds with a variance of 175.28.

Sequence Recognition Experiment

The first experiment conducted was the recognition of sequences of play and
break that had been segmented by hand. The total number of play sequences



was 285 with 134 for training, 51 for validation and 100 for testing. In addi-
tion to this, 320 break sequences were segmented with 154 for training, 66 for
validation and 100 for testing. Fully connected (ergodic) HMMs were used
in these experiments and the observation in each state was modeled by a
Gaussian mixture model. Models were trained using the audio stream only
and the video stream only and also, to implement the early fusion approach,
the audio and video features vectors were concatenated and used to train
models. To concatenate the two streams the video was oversampled by a
factor of four. The late fusion method was implemented by combining in-
dependently modelled audio and video streams. This combination was done
using Equation 7. The optimal value for the weighting factor ω was deter-
mined by selecting the value that gave the highest average log likelihood on
the validation set.

In order to find the optimal number of states and Gaussians for each data
stream model, a number of different combinations of states and Gaussian
were tested using the training and validation data. The optimal number of
states and Gaussians for the HMMs was selected by finding the model trained
by EM on the training data that produced the highest average log likelihood
on the set of validation sequences. For play these were, 20 states and 15
Gaussians per state for audio, 14 states and 15 Gaussians per state for video
and 13 states and 15 Gaussians per state for concatenated audio-video. For
break these were, 20 states and 15 Gaussians per state for audio, 19 states
and 5 Gaussians per state for video and 7 states and 5 Gaussians per state
for concatenated audio-video. The performance of the models was measured
in terms of three different errors: the false acceptance rate (FAR) which is
the percentage of play recognised as break; the false rejection rate (FRR)
which is the percentage of break recognised as playand the half total error
rate (HTER) which is the mean of the FAR and FRR.

The decision was taken by applying the log likelihood ratio criterion: if

log p(X|M = play)− log p(X|M = break) > ∆ (8)

then it is play. The value of ∆ is chosen on the validation set in order to
obtain the Equal Error Rate (FAR = FRR).

The relationship between the FAR and the FRR can be seen by plotting
both errors as a Detection Error Tradeoff (DET) curve [9]. This type of
curve clearly shows the trade off between false rejection and false acceptance
rate. The threshold used in recognition tests was the threshold at the EER
point on the DET curves generated from the validation set using the models
selected with the optimal topology. The set of these curves for the audio,
video, audio-video models and the fusion of audio and video is shown in
Figure 1.

The optimal model for each mode was then applied to the set of test se-
quences. Table 1 shows the results on the test set using the threshold that
produced an EER on the validation set. From these results the advantage of
using both audio and video data for the sequence recognition task is clear.
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Figure 1: DET plot for validation set. This shows the performance of each modelling
technique, with the false rejection rate plotted again the false acceptance rate.

Also the use of late fusion by combining the decision from each stream pro-
vides an improvement over early fusion by feature vector concatenation.

Sequence Segmentation Experiment

In the next experiment an unsegmented piece of football data was automat-
ically segmented into play and break sequences. The data was divided into
four sections: the first and second half of both games. Models were trained
on the pre-segmented play and break sequences from each of the four data
sections in turn and then tested on the other three sections. This will give
an indication of the ability of the HMMs to generalise both within one game
and also between games. The sequences were sampled at each second with
a sliding window of three seconds. This window is much shorter than the
average length of the sequences. However given the large variance of the se-
quence lengths in the training set and the use of fully connected HMMs this
should not have too much effect on the results. So for each 3 second window
in the section of data we are segmenting we produce a likelihood of play and
a likelihood of break.

In order to segment one half of a football game we need some way of
modelling the long term structure of the game. In this case we used a 2 state
fully connected HMM to model the transitions between the play events and
the break events. The transition probabilities for this HMM were determined
by counting the number of transitions in the section of the game used for
training. The emission from each state of this HMM is given by the likelihood
of play and break computed from the 3 second data window centered at each
second in the section of the game we are segmenting. This HMM was then
decoded for each section of the game using the Viterbi algorithm [12]. We
measure the accuracy of the segmentation by comparing the classification



Mode FAR FRR HTER
Audio only 30.6 40.4 35.5
Video only 19.3 22.2 20.8
Early fusion 20.4 17.3 18.8
Late fusion 16.3 15.1 15.7

Table 1: Results for each of the modelling techniques on the test set.
These are results for the two-class problem of classifying play vs break
in football data. The results use the a priori EER threshold taken from
the validation set. For a random classifier the values of FAR, FRR and
HTER would all be 50.

given by the Viterbi decoding at each second to the labeling of the data for
that second.

The results for training on each section of data in turn and testing on
the other three sections of data using the late fusion technique are shown in
Table 2. Table 3 shows a summary of the results for the different methods
used in these experiments. This shows that while using motion features alone
produces good results this can be improved by the addition of the audio
stream using the late fusion method.

While there is an increase in accuracy, the key contribution of the audio
stream is an increase in robustness. This can be seen in last two columns
of Table 3. The audio recognition rate is almost constant over all the test
sets regardless of whether they are from the same game as the training set
or not. The motion however performs noticably worse when the test set is
from a different game. This lack of robustness to changes in game is even
more pronounced in the results of the early fusion technique. By using the
late fusion method we can significantly improve the robustness of the system
to changes in game.

CONCLUSION

In this paper we have proposed the use of both audio and video features
to recognise events in football. In our approach we model the audio and
video streams separately using HMMs. We then use late fusion to combine
the decisions of the audio and video streams to form a single recognition
decision. In order to test the effectivness of this method we compared it to
modelling each stream alone and also the two streams combined using early
fusion through concatenation of the feature vector. It can be seen in the
results that the late fusion technique provides the most accurate recognition
of sequences. This technique also provides the most accurate segmentation
of football into play and break sequences. The paired Students t-test was
used to test whether the improvement in recognition rate produced by the
addition of the audio data is statistically significant. This test was performed
on the results from using motion only and the results from using audio and
video late fusion over the entire test set. It showed that the improvement



Training sets
Test sets Game 1 Game 1 Game 2 Game 2

1st half 2nd half 1st half 2nd half
Game 1 1st half 84.5 83.2 80.6 82.3
Game 1 2nd half 85.5 87.9 79.2 80.3
Game 2 1st half 88.4 87.3 90.7 87.6
Game 2 2nd half 87.5 85.4 86.5 88.6

Table 2: The percentage recognition rates for the segmentation of
football tapes using late fusion by combining the decision from each
stream. The recognition rate for each tapes is shown when tested with
the models trained on each of the other tapes. Note the diagonal
shows the training performance.

is statistically significant with the probability of the null hypothesis being
0.003.

This shows the ability of statistical models such as HMMs to model se-
quences of data given simple low level features. It also highlights the advan-
tage of being able to model each stream of data using the optimal model for
that stream and then combining the decisions from the models to classify a
sequence. We feel that these results could be improved further by improving
the motion features and also by the introduction of colour as another data
stream. One approach to this could be to model the dominant object motion
as well as the camera motion.

There is clearly much scope for further investigation into event detec-
tion in multi-modal sequences. One problem is being able to model the
interactions between streams. The techniques used here model each stream
independently so these interactions are not modelled. Clearly in most real
situations this assumption of independence does not hold. A number of mod-
ifications to HMMs have been proposed to model these interactions [1] [4]. It
is proposed to next carry out a comparision of different multi-modal sequence
processing techniques on the same data sets. This will then provide a base
line for the development of new techniques.
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